Placeholder Image

Subtitles section Play video

  • "Optimal" sounds pretty good!

  • Does that mean we can't do any better?

  • Well, not by encoding symbols one-at-a-time.

  • But if we want to encode long sequences of symbols, we can reduce the expected length

  • of the encoding by working with, say, pairs of symbols instead of only single symbols.

  • The table below shows the probability of pairs of symbols from our example.

  • If we use Huffman's Algorithm to build the optimal variable-length code using these probabilities,

  • it turns out the expected length when encoding pairs is 1.646 bits/symbol.

  • This is a small improvement on the 1.667 bits/symbols when encoding each symbol individually.

  • And we'd do even better if we encoded sequences of length 3, and so on.

  • Modern file compression algorithms use an adaptive algorithm to determine on-the-fly

  • which sequences occur frequently and hence should have short encodings.

  • They work quite well when the data has many repeating sequences, for example, natural

  • language data where some letter combinations or even whole words occur again and again.

  • Compression can achieve dramatic reductions from the original file size.

  • If you'd like to learn more, look up "LZW" on Wikipedia to read the Lempel-Ziv-Welch

  • data compression algorithm.

"Optimal" sounds pretty good!

Subtitles and vocabulary

Click the word to look it up Click the word to find further inforamtion about it

B2

1.2.9 哈夫曼法則 (1.2.9 Huffman Code)

  • 12 0
    林宜悉 posted on 2021/01/14
Video vocabulary