Subtitles section Play video
MAREN: So if you watched our previous episode on how batteries work,
所以,如果你看了我們上一集的電池工作原理。
you'll know that batteries are complicated.
你就會知道,電池很複雜。
They come in all shapes, sizes, charge capabilities,
它們有各種形狀、大小、充電能力。
and we use them in everything.
我們什麼都用它們。
And if there's one battery technology that sets the gold standard,
而如果說有一種電池技術是黃金標準的話。
it's the lithium-ion battery.
是鋰離子電池。
These batteries are one of the only types
這些電池是僅有的幾種類型之一。
to pack powerful energy storage
以包裝強大的儲能
in a small and lightweight design.
在小而輕的設計中。
So, when designing battery technologies for the future,
所以,在設計未來的電池技術時。
the challenge is to improve upon the advantages
挑戰是如何改進這些優勢
that the lithium-ion battery already has.
的鋰離子電池已經具備。
Because even though lithium-ion batteries
因為儘管鋰離子電池
currently dominate the global battery market,
目前在全球電池市場佔據主導地位。
there are quite a few things about them that could be improved,
他們有不少可以改進的地方。
like power output, energy capacity,
如功率輸出、能量容量。
cost, lifespan, and safety.
成本、壽命和安全性。
Now some of the most promising designs
現在一些最有前途的設計
for giving lithium-ion battery technology a boost
以促進鋰離子電池技術的發展
are the lithium-silicon battery,
是鋰硅電池。
the lithium-sulfur battery,
鋰硫電池。
solid-state lithium-ion batteries
固態鋰離子電池
and one that's a common nation of approaches.
和一個共同國家的方法。
And changing out the materials used
並更換使用的材料
to make anodes, cathodes and electrolytes
用於製造陽極、陰極和電解質。
is exactly what scientists have been doing.
正是科學家們一直在做的事情。
But what is it gonna take for one of these
但是,什麼是它要去採取其中的一個。
to become the new battery of the future?
以成為未來的新型電池?
It's important to note that a simple change
需要注意的是,一個簡單的改變
in a battery's design can significantly affect
在電池的設計中,會顯著影響
its voltage and storage capacity.
其電壓和存儲容量。
Here I've made a really simple homemade battery
在這裡,我已經做了一個非常簡單的自制電池。
with 14 cells using an ice cube tray,
與14個細胞使用冰塊盤。
steel screws, copper wire, a couple electrical leads,
鋼螺絲,銅線,幾根電線。
and this voltmeter.
和這個電壓表。
And the way this works is that each little ice cube tray
而這種工作方式是,每個小冰塊托盤
is its own battery cell.
是自己的電池單元。
So you've got the copper acting like the cathode.
所以你讓銅充當了陰極。
It's gaining electrons.
它在獲得電子。
The steel is acting as the anode.
鋼材作為陽極。
It's losing electrons.
它正在失去電子。
And the salt water is acting as my electrolyte,
而鹽水是作為我的電解質。
allowing that flow of charges.
允許這種電荷的流動。
Now, when I hook it up to the voltmeter,
現在,當我把它連接到電壓表上時,
you can see I am reading a voltage of around 200 millivolts.
你可以看到我讀到的電壓是200毫伏左右。
Now, what I'm interested in is what would happen
現在,我感興趣的是,會發生什麼?
if we changed out the electrolyte solution
如果換掉電解質溶液
to the, say, vinegar.
到,比如說,醋。
Lemon juice.
檸檬汁。
So all these sorts of things can make a significant impact
所以這些事情都會產生重大影響。
on the voltage and the storage capacity of the battery.
在電壓和電池的存儲容量上。
MAREN: First up, silicon anode batteries.
MAREN:首先是硅陽極電池。
Remember that anodes are the negative electrode within a call?
記得陽極是通話內的負極嗎?
Well, like we talked about in the last episode,
就像我們上一集說的那樣
the current most popular anode material
目前最流行的陽極材料
in lithium-ion cells is graphite.
鋰離子電池中的是石墨。
This is because graphite's structure helps keep
這是因為石墨的結構有助於保持石墨的性能。
those lithium ions efficiently stored in the anode.
這些鋰離子有效地儲存在陽極中。
But there is a maximum amount of lithium-ions
但鋰離子的用量是最大的。
that can be stored in the anode,
可以存儲在陽極的。
and that determines the cell's capacity.
而這決定了電池的容量。
And as it turns out,
而事實證明。
silicon does a much better job than graphite
硅比石墨好用
at absorbing and holding lithium-ions.
吸收和保持鋰離子。
And this means batteries can be made smaller,
而這意味著電池可以做得更小。
more energy-efficient, and cheaper.
更節能,更便宜。
But, of course, this does all come with a catch.
不過,當然,這一切都有一個前提。
Silicon anodes have a tendency to dramatically expand
硅陽極有急劇膨脹的趨勢。
when encountering lithium during charging.
在充電過程中遇到鋰電時。
And those anodes also then shrink
而這些陽極也會隨之收縮
when the battery discharges.
當電池放電時。
And this repeated expansion and contraction
而這種反覆的擴張和收縮
shortens the lifespan of the battery,
縮短了電池的壽命。
and ultimately, its usefulness.
並最終發揮其作用。
But researchers like those at Enovix,
但像Enovix公司的研究人員。
are aiming to fix this problem.
正在努力解決這個問題。
We don't eliminate anode expansion and contraction,
我們不消除陽極的膨脹和收縮。
but we do control them.
但我們確實控制了他們。
Propendent 3D cell architecture
先導的3D細胞結構
enables us to integrate
使我們能夠整合
a very thin stainless steel constraint
一根很薄的不鏽鋼約束條
into our battery design.
融入我們的電池設計。
This applies a uniform force around the battery
這將在電池周圍施加一個均勻的力
to constrain the silicon expansion within the cell.
以制約電池內硅的膨脹。
during the charging cycles and during discharge.
在充電週期和放電期間。
MAREN: While some researchers have set their sights on the anode,
MAREN:而一些研究人員則把目光投向了陽極。
others are experimenting with the cathode
其他人正在試驗陰極
with one innovation being lithium sulfur cells.
與創新之一是鋰硫電池。
Lithium on its own is a very volatile substance.
鋰本身就是一種很容易揮發的物質。
It reacts to air, it reacts to water.
它對空氣有反應,對水有反應。
So what the OXIS scientists have done
那麼,OXIS的科學家們做了什麼?
is taken sulfur as a non-conductive, very cheap material.
是採取硫磺作為一種不導電的、非常廉價的材料。
and used the sulfur to act as a fire retardant
並用硫磺作為阻燃劑。
around lithium metal,
圍繞金屬鋰。
so that if air or water impacts lithium metal,
以便如果空氣或水衝擊金屬鋰。
thermal runaway, fire, explosion, doesn't take place.
熱失控,火災,爆炸,不發生。
Sulfur cathodes, like their silicon anode counterparts,
硫陰極和硅陽極一樣。
can absorb more lithium ions
可以吸收更多的鋰離子
than the typical cobalt-based cathodes.
比典型的鈷基陰極。
offering a reduced battery cost
降低電池成本
with increased energy density and improved safety
增加了能量密度,提高了安全性
compared to lithium-ion batteries.
與鋰離子電池相比。
HUW: Because one of the key factors
HUW。因為其中一個關鍵因素
of lithium sulfur
鋰硫合金
is that it is 50 to 60% lighter than lithium-ion.
是,它比鋰電輕50-60%。
Now, if you take a bus with a very large battery,
現在,如果你坐公車,電池非常大。
if you can replace that technology with lithium-sulfur
如果你能用鋰硫合金取代該技術
and you reduce the weight and still
你減少了重量,但仍然
extend the distance covered,
擴大覆蓋的距離。
then you have a major breakthrough
那麼你就有了重大突破
in the renewable transportation systems.
在可再生運輸系統中。
But lithium-sulfur cells are still not quite perfect
但鋰硫電池仍不太完美
because they face the challenge
因為他們面臨著挑戰
of lithium-polysulfide formation,
形成鋰-聚硫化物的。
or what's known as the polysulfide shuttle.
或稱為多硫化物穿梭機。
The sulfur electrode also expands and contracts
硫電極也會膨脹和收縮。
as it cycles, which results in a loss of battery efficiency
當它循環時,會導致電池效率的損失。
and power and energy density.
以及功率和能量密度。
But what if the answer isn't in the anode or the cathode?
但如果答案不在陽極或陰極呢?
What about the electrolyte?
那電解液呢?
Well, that's where solid state batteries come in.
嗯,這就是固態電池的作用。
Solid state electrolytes have been around for a while
固態電解質已經存在了一段時間。
and have recently caught on
並在最近流行起來
as a contender for future batteries
作為未來電池的競爭者
because of their promise of improved safety.
因為他們承諾提高安全性。
But solid state polymers can better withstand extreme conditions.
但固態聚合物可以更好地承受極端條件。
So when heated, they behave like liquids,
所以在加熱時,它們的行為就像液體一樣。
but they can operate without the danger of bursting into flames.
但它們可以在沒有爆燃危險的情況下運行。
Some researchers believe that solid state batteries
一些研究人員認為,固態電池
could even give electric vehicles
甚至可以給電動汽車
over 500 miles of range.
超過500英里的續航能力。
And if we really let our imaginations run wild,
而如果我們真的讓我們的想象力肆意馳騁。
using solid state batteries in solar powered vehicles
在太陽能汽車中使用固態電池
like the ones that compete in the World Solar Challenge
就像那些參加世界太陽能挑戰賽的選手一樣。
could potentially lead to even longer ranges.
可能會導致更長的範圍。
Now, what's the downside to these solid state batteries?
現在,這些固態電池的缺點是什麼?
Well, unlike liquid electrolytes,
嗯,不像液體電解質。
they can't stay in contact
失聯
with every bit of the electrodes all the time.
與電極的每一點一直。
And this makes it harder for the ions
這使得離子難以
to move between electrodes
在電極間移動
and create that flow of electricity that we need.
並創造我們所需要的電力流。
But what if we were able to combine
但如果我們能夠結合
a few of these innovations that we've already talked about?
我們已經說過的這些創新的幾個?
We could now make a transition
我們現在可以進行過渡
from liquid electrolyte to solid state lithium sulfur.
從液態電解質到固態硫鋰。
And I'm talking about removing the diesel trucks, diesel buses,
而我說的是取消機油卡車、機油客車。
the lead based fuel that our aircraft consume.
我們的飛機所消耗的鉛基燃料。
These are the biggest pollutants that we've got on the planet,
這些都是我們地球上最大的汙染物。
and solid state is certainly the phenomenon
和固態當然是現象
that will render those achievements more realistic.
這將使這些成就更加現實。
MAREN: So OXIS Energy is currently not in the solar car market,
MAREN:所以奧克斯能源目前並沒有進入太陽能汽車市場。
but is instead focusing on aerospace,
但卻專注於航空航天領域。
marine vessels, and electric vehicles.
船舶和電動汽車。
They're close to achieving an energy density
他們接近實現能量密度
of 500 watt-hours per kilogram
每公斤500瓦特小時的功率。
with their battery,
與他們的電池。
and have already set a new target
並已設定新的目標
of 600 watt-hours per kilogram.
每公斤600瓦時。
Essentially, that means a battery like this in the future
本質上,這意味著未來這樣的電池。
could be capable of powering an electric car
可以為電動汽車提供動力
for 1,000 kilometers on a single charge.
一次充電可行駛1000公里。
By comparison, Tesla's Panasonic lithium-ion battery cells,
相比之下,特斯拉的松下鋰離子電池電芯。
which are currently the most commercially advanced,
是目前商業上最先進的。
are about half as energy dense.
是能量密度的一半左右。
So all of the battery innovations we've covered
所以,我們所涉及的所有電池創新技術
are definitely impressive.
是絕對令人印象深刻的。
But if we want more solar vehicles on the roads,
但如果我們想讓更多的太陽能汽車上路。
we're gonna need a powerful battery storage system
我們需要一個強大的電池存儲系統。
with high energy density, high efficiency,
具有能量密度高、效率高的特點。
and the ability to last long on the road, rain or shine,
並能在道路上長期行駛,風雨無阻。
because currently, none of the options on the market
因為目前,市場上沒有任何一種選擇。
or even in development totally do the job.
甚至在發展中完全可以做到。
That's why it's important to have events like the World Solar Challenge,
所以舉辦世界太陽能挑戰賽這樣的活動很重要。
'cause when creating a vehicle like this,
'因為在創造這樣的車輛時,
you're pushing technology to its limit.
你把技術推到了極限。