Nowtalkingmoreabouthardware, thisguyhas a coupleNVIDIAGPUsassignedtoit, orpassedthroughtoitthrough a technologycalledPCIepass-through.
ThesearesomebeefyGPUs, andnoticetheyareVGPUsforvirtualGPU, similartowhatyoudowiththeCPU, cuttinguptheCPUandassigningsomeofthatto a virtualCPUon a virtualmachine.
Sohereweareindatascientistworld.
Thisis a JupyterNotebook, a commontoolusedby a datascientist.
Andwhatyou'regonnaseehereis a lotofcodethatthey'reusingtopreparethedata, specificallythedatathatthey'regonnatrainorfine-tunetheexistingmodelon.
Nowwe'renotgonnadivedeeponthat, but I dowantyoutoseethis.
Checkthisout.
A lotofthiscodeisallaboutgettingthedataready.
SoinVMware's case, itmightbe a bunchoftheirknowledgebase, productdocumentation, andthey'regettingitreadytobefedtotheLLM.
We'reonlychanging 65 millionparameters, whichsoundslike a lot, right?
Butnotinthegrandschemeofthingsoflike a 7 billionparametermodel.
We'reonlychanging 0.93% ofthemodel.
Andthenwecanactuallyrunourfine-tuning, whichthisis a specifictechniqueinfine-tuningcalledprompt-tuning, wherewesimplyfeeditadditionalpromptswithanswerstochangehowitwillreacttopeopleaskingitquestions.
Thisprocesswilltakethreetofourminutestofine-tuneitbecauseagain, we'renotchanging a lot.
SowithVMwarePrivateAIFoundation, withNVIDIA, theyhavethosetoolsbakedrightintowhereitjustkindofworksforwhatwouldotherwisebe a verycomplexsetup.
Andbytheway, thiswholeRAGthing, like I saidearlier, we'reabouttodothis.
I actuallyconnected a lotofmynotesandjournalentriesto a privateGPTusingRAG, and I wasabletotalkwithitaboutme, askingitaboutmyjournalentriesandansweringquestionsaboutmypast.
That's sopowerful.
Now, beforewemoveon, I justwannahighlightthefactthatNVIDIA, withtheirNVIDIAAIEnterprise, givesyousomeamazing, fantastictoolstopulltheLLMofyourchoiceandthenfine-tuneandcustomizeanddeploythatLLM.