Placeholder Image

Subtitles section Play video

  • In the movie "Interstellar,"

    譯者: Debra Liu 審譯者: Wilde Luo

  • we get an up-close look at a supermassive black hole.

    在「星際效應」這部電影中,

  • Set against a backdrop of bright gas,

    我們更近距離地看到了 超質量黑洞。

  • the black hole's massive gravitational pull

    在明亮氣體的背景下,

  • bends light into a ring.

    黑洞的巨大引力

  • However, this isn't a real photograph,

    使光線形成戒指般的環狀。

  • but a computer graphic rendering --

    但是,這不是張真實的照片,

  • an artistic interpretation of what a black hole might look like.

    而是電腦圖像的呈現,

  • A hundred years ago,

    是對黑洞可能的呈像的 藝術化的演繹。

  • Albert Einstein first published his theory of general relativity.

    一百年前,

  • In the years since then,

    愛因斯坦首先發表了他的相對論。

  • scientists have provided a lot of evidence in support of it.

    那之後的幾年,

  • But one thing predicted from this theory, black holes,

    科學家提供了很多證據支持他的理論。

  • still have not been directly observed.

    但是從他的理論中預測到的黑洞

  • Although we have some idea as to what a black hole might look like,

    仍然無法有直接證據證實。

  • we've never actually taken a picture of one before.

    雖然我們對於黑洞的呈像有一些想法,

  • However, you might be surprised to know that that may soon change.

    但是我們從來沒有真正 拍攝過一張黑洞的相片。

  • We may be seeing our first picture of a black hole in the next couple years.

    也許你會驚訝於這種困境即將改變。

  • Getting this first picture will come down to an international team of scientists,

    我們在未來幾年內也許 可以得到第一張黑洞的相片。

  • an Earth-sized telescope

    國際的科學家團隊 將會獲得這第一張圖片,

  • and an algorithm that puts together the final picture.

    透過地球大小般的望遠鏡,

  • Although I won't be able to show you a real picture of a black hole today,

    和一個演算方法,獲得最後這張圖片。

  • I'd like to give you a brief glimpse into the effort involved

    雖然,我今天無法讓大家看到 黑洞真正的照片,

  • in getting that first picture.

    但是,我想要簡單地向各位說明一下

  • My name is Katie Bouman,

    獲得這首張照片所付出的努力。

  • and I'm a PhD student at MIT.

    我是 Katie Bouman ,

  • I do research in a computer science lab

    一名麻省理工學院博士生。

  • that works on making computers see through images and video.

    我在電腦科學實驗室做研究,

  • But although I'm not an astronomer,

    讓電腦透過影像及影片, 能夠「看見」、識別。

  • today I'd like to show you

    雖然我不是天文學家,

  • how I've been able to contribute to this exciting project.

    但是,我現在要讓大家看的是

  • If you go out past the bright city lights tonight,

    我如何投入這令人興奮的專案。

  • you may just be lucky enough to see a stunning view

    如果今晚你們離開了城市明亮的燈光,

  • of the Milky Way Galaxy.

    可能運氣夠好,

  • And if you could zoom past millions of stars,

    可以看到銀河系美麗的影像。

  • 26,000 light-years toward the heart of the spiraling Milky Way,

    如果你的視野能夠穿越數百萬顆星星,

  • we'd eventually reach a cluster of stars right at the center.

    向着銀河的螺旋中心前進 26,000 光年,

  • Peering past all the galactic dust with infrared telescopes,

    最後會在中心點遇到一群星星。

  • astronomers have watched these stars for over 16 years.

    天文學家使用紅外線望遠鏡 透過銀河系塵埃

  • But it's what they don't see that is the most spectacular.

    觀察這些星星, 已經超過了 16 年。

  • These stars seem to orbit an invisible object.

    但是,最為壯觀的東西, 卻是他們無法看見的。

  • By tracking the paths of these stars,

    這些星星似乎繞著一個 隱形的物體運轉著。

  • astronomers have concluded

    藉由追蹤這些星星的軌跡,

  • that the only thing small and heavy enough to cause this motion

    天文學家得到一個結論:

  • is a supermassive black hole --

    只有一個又小又重的物體 才能夠造成這樣的運動軌跡,

  • an object so dense that it sucks up anything that ventures too close --

    那就是超質量黑洞,

  • even light.

    它的密度高到能夠吸收 所有敢於近距離靠近它的東西,

  • But what happens if we were to zoom in even further?

    連光線也不例外。

  • Is it possible to see something that, by definition, is impossible to see?

    但是,如果我們將影像放大, 會發生什麼事呢?

  • Well, it turns out that if we were to zoom in at radio wavelengths,

    有沒有可能看到那些 原本被定義為看不見的東西呢?

  • we'd expect to see a ring of light

    事實顯示,如果我們 以無線電波長的尺度放大,

  • caused by the gravitational lensing of hot plasma

    我們預期可以看到一個光環,

  • zipping around the black hole.

    它是由黑洞旁 高速移動的熱離子體的

  • In other words,

    「引力透鏡」效應形成。

  • the black hole casts a shadow on this backdrop of bright material,

    換句話說,

  • carving out a sphere of darkness.

    黑洞在明亮物質的背景下投射出陰影,

  • This bright ring reveals the black hole's event horizon,

    刻畫出黑色的球體。

  • where the gravitational pull becomes so great

    這個光環揭露了黑洞的表面界限,

  • that not even light can escape.

    在那個地方,引力拉扯的力量很大,

  • Einstein's equations predict the size and shape of this ring,

    連光線都無法逃脫。

  • so taking a picture of it wouldn't only be really cool,

    愛因斯坦方程式預測了 這個光環的大小與形狀,

  • it would also help to verify that these equations hold

    所以拍攝黑洞的相片不只是很酷,

  • in the extreme conditions around the black hole.

    它也有助於驗證這些方程式

  • However, this black hole is so far away from us,

    能在黑洞附近這樣的 極端環境下成立。

  • that from Earth, this ring appears incredibly small --

    但是,這個黑洞距離我們非常遙遠,

  • the same size to us as an orange on the surface of the moon.

    從地球看過去, 這個光環是不可思議的小,

  • That makes taking a picture of it extremely difficult.

    就像是月球表面的 一個橘子那樣的小。

  • Why is that?

    所以拍攝黑洞的相片是極其困難的。

  • Well, it all comes down to a simple equation.

    為什麼呢?

  • Due to a phenomenon called diffraction,

    因為,這所有的一切 可以歸結於一個簡單的方程式。

  • there are fundamental limits

    由於「衍射」現象,

  • to the smallest objects that we can possibly see.

    我們所能觀察到的最小物體,

  • This governing equation says that in order to see smaller and smaller,

    是有限小的, 我們無法洞察更小的結構。

  • we need to make our telescope bigger and bigger.

    這個方程式說, 為了要看到越來越小的物體,

  • But even with the most powerful optical telescopes here on Earth,

    我們必須製作越來越大的望遠鏡。

  • we can't even get close to the resolution necessary

    但是,即使透過地球上 最強大的光學望遠鏡,

  • to image on the surface of the moon.

    我們還是遠遠達不到

  • In fact, here I show one of the highest resolution images ever taken

    拍攝月球表面的影像所需要的解析度。

  • of the moon from Earth.

    事實上,請大家看看這張從地球拍攝的

  • It contains roughly 13,000 pixels,

    解析度最高的月球照片之一,

  • and yet each pixel would contain over 1.5 million oranges.

    這張相片大約有一萬三千像素,

  • So how big of a telescope do we need

    而每一個像素可包含 超過 150 萬個橘子。

  • in order to see an orange on the surface of the moon

    那麼,為了要看到月球表面的橘子,

  • and, by extension, our black hole?

    我們需要多大的望遠鏡呢?

  • Well, it turns out that by crunching the numbers,

    再者,為了要看到黑洞?

  • you can easily calculate that we would need a telescope

    事實證明,透過大量運算,

  • the size of the entire Earth.

    我們可以很容易地計算出 我們所需要的望遠鏡

  • (Laughter)

    必須是整個地球那麼大。

  • If we could build this Earth-sized telescope,

    (笑聲)

  • we could just start to make out that distinctive ring of light

    如果我們建造出地球般大小的望遠鏡,

  • indicative of the black hole's event horizon.

    我們馬上就可以探測出一個獨特光環,

  • Although this picture wouldn't contain all the detail we see

    它表明了黑洞的表面界限。

  • in computer graphic renderings,

    雖然這張相片沒有包含所有細節,

  • it would allow us to safely get our first glimpse

    像我們在電腦圖形渲染上看到的那樣,

  • of the immediate environment around a black hole.

    但是,至少我們可以安全地

  • However, as you can imagine,

    對黑洞附近的環境瞥上一眼。

  • building a single-dish telescope the size of the Earth is impossible.

    然而,如同大家想像的,

  • But in the famous words of Mick Jagger,

    建造一個地球大小的 單碟望遠鏡是不可能的。

  • "You can't always get what you want,

    但是在 Mick Jagger 的名言中:

  • but if you try sometimes, you just might find

    「你無法一直得到你所想要的,

  • you get what you need."

    但是如果你去嘗試,你可能會發現

  • And by connecting telescopes from around the world,

    你得到了你所需要的。」

  • an international collaboration called the Event Horizon Telescope

    藉由連結世界各地的望遠鏡,

  • is creating a computational telescope the size of the Earth,

    名為「事件視界望遠鏡」的國際組織

  • capable of resolving structure

    正著手創建一個地球大小的 計算型望遠鏡,

  • on the scale of a black hole's event horizon.

    它能夠解析黑洞的

  • This network of telescopes is scheduled to take its very first picture

    表面界限的結構。

  • of a black hole next year.

    這個望遠鏡網路預計明年

  • Each telescope in the worldwide network works together.

    拍攝黑洞的第一張相片。

  • Linked through the precise timing of atomic clocks,

    世界各地的望遠鏡網路同時運作。

  • teams of researchers at each of the sites freeze light

    透過原子鐘的精準時間鏈結,

  • by collecting thousands of terabytes of data.

    每個地點的研究團隊 藉由蒐集數千兆兆字節的數據

  • This data is then processed in a lab right here in Massachusetts.

    將光線「定格」。

  • So how does this even work?

    麻薩諸塞州這裡的實驗室 接下來處理這些資料。

  • Remember if we want to see the black hole in the center of our galaxy,

    那麼,這些資料是如何運作的呢?

  • we need to build this impossibly large Earth-sized telescope?

    還記得嗎?如果我們想要 看清在銀河中間的黑洞,

  • For just a second, let's pretend we could build

    我們就需要建造地球大小的 望遠鏡,這是不現實的。

  • a telescope the size of the Earth.

    等一下,假設我們能夠建造

  • This would be a little bit like turning the Earth

    地球般大小的望遠鏡。

  • into a giant spinning disco ball.

    就有點像將地球

  • Each individual mirror would collect light

    想像成舞廳裡的迪斯可旋轉球。

  • that we could then combine together to make a picture.

    每一面鏡子會蒐集光線,

  • However, now let's say we remove most of those mirrors

    然後我們能將這些 影像整合成一張圖片。

  • so only a few remained.

    但是,現在讓我們 移除大多數的鏡子,

  • We could still try to combine this information together,

    只剩下少數幾個。

  • but now there are a lot of holes.

    我們仍可試著整合這些資訊,

  • These remaining mirrors represent the locations where we have telescopes.

    但是,現在只能看到很多「孔洞」。

  • This is an incredibly small number of measurements to make a picture from.

    這些剩下的鏡子代表 那些有望遠鏡的地方。

  • But although we only collect light at a few telescope locations,

    測量數據少之又少, 甚至無法形成一張圖片。

  • as the Earth rotates, we get to see other new measurements.

    雖然我們只在少數 有望遠鏡的地方蒐集光線,

  • In other words, as the disco ball spins, those mirrors change locations

    地球旋轉時,我們可以 獲得一些新的測量數據。

  • and we get to observe different parts of the image.

    換句話說,就像迪斯可球旋轉時, 那些鏡子也會改變位置,

  • The imaging algorithms we develop fill in the missing gaps of the disco ball

    我們得以觀察不同面向的影像。

  • in order to reconstruct the underlying black hole image.

    我們所開發的成像算法填補了 「迪斯可球」的不可見縫隙,

  • If we had telescopes located everywhere on the globe --

    目的在重建黑洞的相片。

  • in other words, the entire disco ball --

    如果地球的每個地方都有望遠鏡,

  • this would be trivial.

    也就是整個迪斯可球佈滿了鏡子,

  • However, we only see a few samples, and for that reason,

    這是最簡潔、理想的情況。

  • there are an infinite number of possible images

    但是,我們只看得到 某些局部的成像,因此,

  • that are perfectly consistent with our telescope measurements.

    有無數可能的相片

  • However, not all images are created equal.

    可以與現有望遠鏡的 局部成像相吻合。

  • Some of those images look more like what we think of as images than others.

    當然,並不是每一張「相片」的 優先級別都相同。

  • And so, my role in helping to take the first image of a black hole

    有些相片比別的 更近似我們所想像的。

  • is to design algorithms that find the most reasonable image

    因此,為了協助拍攝黑洞 第一張相片,我的任務就是

  • that also fits the telescope measurements.

    設計發現最合理影像的演算法,

  • Just as a forensic sketch artist uses limited descriptions

    當然也必須符合望遠鏡的量測數據。

  • to piece together a picture using their knowledge of face structure,

    就像法庭的素描家一樣, 利用有限的相貌描述以及

  • the imaging algorithms I develop use our limited telescope data

    他們對於臉部結構的知識, 將表現相貌特點的圖片拼湊出來,

  • to guide us to a picture that also looks like stuff in our universe.

    我開發的影像演算法 使用有限的望遠鏡資料

  • Using these algorithms, we're able to piece together pictures

    為我們生成這種影像: 類似於宇宙中的事物的影像。

  • from this sparse, noisy data.

    利用這些演算法, 讓我們能夠利用零零散散的資料

  • So here I show a sample reconstruction done using simulated data,

    拼湊出黑洞可能的樣子。

  • when we pretend to point our telescopes

    在這裡,讓大家看一個利用模擬資料 重建的影像樣本,

  • to the black hole in the center of our galaxy.

    這是我們假設將望遠鏡指向

  • Although this is just a simulation, reconstruction such as this give us hope

    銀河系中心的黑洞時所得到的。

  • that we'll soon be able to reliably take the first image of a black hole

    雖然這只是一個模擬, 但是這讓我們充滿了希望:

  • and from it, determine the size of its ring.

    我們能夠仰賴這樣的模擬演算法, 很快地得到黑洞的第一張相片,

  • Although I'd love to go on about all the details of this algorithm,

    同時也能計算「光環」的大小。

  • luckily for you, I don't have the time.

    雖然我很樂意繼續說明 這個演算法的所有細節,

  • But I'd still like to give you a brief idea

    但由於時間不夠,所以 你們也不用費腦子聽了。

  • of how we define what our universe looks like,

    但是,我還是很樂意 跟大家做個簡短的說明:

  • and how we use this to reconstruct and verify our results.

    我們如何定義宇宙看起來像什麼?

  • Since there are an infinite number of possible images

    以及我們如何 利用這個演算法重建並驗證結果。

  • that perfectly explain our telescope measurements,

    因為有無數可能的影像

  • we have to choose between them in some way.

    與地球上望遠鏡的量測完全符合,

  • We do this by ranking the images

    我們必須在它們之間 找個方法進行挑選。

  • based upon how likely they are to be the black hole image,

    我們對影像進行打分,

  • and then choosing the one that's most likely.

    打分的根據是:看起來有多像黑洞,

  • So what do I mean by this exactly?

    然後選擇最像的影像。

  • Let's say we were trying to make a model

    那麼,這到底是什麼意思呢?

  • that told us how likely an image were to appear on Facebook.

    假設我們試著建立一個模型,

  • We'd probably want the model to say

    它告訴我們這個影像在 Facebook 上出現的可能性。

  • it's pretty unlikely that someone would post this noise image on the left,

    我們希望這個模型會這樣判斷:

  • and pretty likely that someone would post a selfie

    大家應該不太可能會上傳 像左邊這張亂亂的圖,

  • like this one on the right.

    而比較可能會上傳自拍照,

  • The image in the middle is blurry,

    像右邊這張。

  • so even though it's more likely we'd see it on Facebook

    中間這張圖像片是模糊的,

  • compared to the noise image,

    即使模糊,和亂亂的圖像比較的話, 我們還是很有可能

  • it's probably less likely we'd see it compared to the selfie.

    在 Facebook 上看到,

  • But when it comes to images from the black hole,

    只不過不如自拍照那樣常見。

  • we're posed with a real conundrum: we've never seen a black hole before.

    但是,如果是黑洞的影像,

  • In that case, what is a likely black hole image,

    我們遇到一個真正的難題: 我們從來沒見過黑洞的樣子。

  • and what should we assume about the structure of black holes?

    在這種情況下, 黑洞可能的影像是什麼?

  • We could try to use images from simulations we've done,

    我們應該假設黑洞的結構是什麼?

  • like the image of the black hole from "Interstellar,"

    我們可能會試著使用 之前生成的模擬結果,

  • but if we did this, it could cause some serious problems.

    像「星際效應」裡的黑洞影像,

  • What would happen if Einstein's theories didn't hold?

    但是,如果這樣做的話, 可能會造成一些嚴重的問題。

  • We'd still want to reconstruct an accurate picture of what was going on.

    如果愛因斯坦的理論不適用的話, 會發生什麼事?

  • If we bake Einstein's equations too much into our algorithms,

    我們還是想要重建 一個準確的圖像。

  • we'll just end up seeing what we expect to see.

    如果將太多愛因斯坦的方程式 融入我們的演算法中,

  • In other words, we want to leave the option open

    最後只會得到我們期望的結果, 而不一定是事實。

  • for there being a giant elephant at the center of our galaxy.

    換句話說,我們不能 貿然確定實際情況如何,

  • (Laughter)

    因為銀河系中央有一隻巨象。

  • Different types of images have very distinct features.

    (笑聲)

  • We can easily tell the difference between black hole simulation images

    不同類型的影像有著 各自非常顯著的特徵。

  • and images we take every day here on Earth.

    我們可以很容易地區分 黑洞模擬影像

  • We need a way to tell our algorithms what images look like

    以及我們在地球上日常生活中的照片。

  • without imposing one type of image's features too much.

    我們需要一種方法來告訴演算法 影像看起來像什麼,

  • One way we can try to get around this

    而不是去強加特定一種影像的特徵給它。

  • is by imposing the features of different kinds of images

    我們可以用一個方法 試著解決這個問題:

  • and seeing how the type of image we assume affects our reconstructions.

    通過導入不同類型影像的特徵 讓演算法重建影像,

  • If all images' types produce a very similar-looking image,

    然後觀察預先假設的影像類型 如何影響我們重建的影像。

  • then we can start to become more confident

    如果所有不同類型的影像特徵 產生的結果都很類似,

  • that the image assumptions we're making are not biasing this picture that much.

    那麼我們可以充滿信心地說:

  • This is a little bit like giving the same description

    對於這個影像所做的假設 沒有與事實偏差太多。

  • to three different sketch artists from all around the world.

    這有點像是將相同的相貌描述

  • If they all produce a very similar-looking face,

    提供給三個來自世界各地不同的素描家,

  • then we can start to become confident

    如果他們都畫出很相像的臉,

  • that they're not imposing their own cultural biases on the drawings.

    那麼我們可以充滿信心地說:

  • One way we can try to impose different image features

    他們的作品沒有受到 本人的文化偏見的影響。

  • is by using pieces of existing images.

    我們導入不同類型影像 的特徵的一個方法

  • So we take a large collection of images,

    就是藉由現存的影像去拼湊。

  • and we break them down into their little image patches.

    所以我們要蒐集大量的影像,

  • We then can treat each image patch a little bit like pieces of a puzzle.

    然後將它們分解成許多碎片。

  • And we use commonly seen puzzle pieces to piece together an image

    之後我們可以把這些碎片 當作拼圖的碎片。

  • that also fits our telescope measurements.

    我們使用常見的「碎片」拼湊成圖片,

  • Different types of images have very distinctive sets of puzzle pieces.

    這張圖片當然也要 符合望遠鏡的量測數據。

  • So what happens when we take the same data

    不同類型的影像有其獨特的拼圖碎片。

  • but we use different sets of puzzle pieces to reconstruct the image?

    所以,當我們利用相同的數據資料

  • Let's first start with black hole image simulation puzzle pieces.

    卻使用不同類型的拼圖碎片 來重建這個影像,會發生什麼事?

  • OK, this looks reasonable.

    讓我們先從黑洞模擬 圖像的拼圖碎片開始。

  • This looks like what we expect a black hole to look like.

    好的,這看起來很合理。

  • But did we just get it

    這看起來像我們 所期待的黑洞的樣子。

  • because we just fed it little pieces of black hole simulation images?

    但是,僅僅是導入了 一些些黑洞模擬影像的碎片,

  • Let's try another set of puzzle pieces

    我們就得出了結果嗎?

  • from astronomical, non-black hole objects.

    讓我們來試試另一組拼圖,

  • OK, we get a similar-looking image.

    這些是天文學影像的拼圖,不是黑洞的。

  • And then how about pieces from everyday images,

    沒錯,我們得到一個類似的影像。

  • like the images you take with your own personal camera?

    那麼如果是日常生活的影像呢?

  • Great, we see the same image.

    就像用相機所照的照片一樣?

  • When we get the same image from all different sets of puzzle pieces,

    很好,我們得到相同的影像。

  • then we can start to become more confident

    當我們從不同類型的拼圖 得到相同的影像,

  • that the image assumptions we're making

    我們更有信心了,

  • aren't biasing the final image we get too much.

    我們所假定的影像

  • Another thing we can do is take the same set of puzzle pieces,

    和我們最後得到的影像 並沒有差距太多。

  • such as the ones derived from everyday images,

    我們可以做的另一件事 就是使用同一組拼圖,

  • and use them to reconstruct many different kinds of source images.

    比如日常生活中的影像碎片,

  • So in our simulations,

    並利用它們來重組 各種不同素材來源的影像。

  • we pretend a black hole looks like astronomical non-black hole objects,

    那麼,在模擬實驗當中,

  • as well as everyday images like the elephant in the center of our galaxy.

    我們假設黑洞看起來就像是 天文學裡那些非黑洞的物體,

  • When the results of our algorithms on the bottom look very similar

    或者又把它看成「銀河系中央的大象」 這樣的日常生活影像。

  • to the simulation's truth image on top,

    我們下方的演算結果

  • then we can start to become more confident in our algorithms.

    和上方的模擬實驗中的真實影像很相像,

  • And I really want to emphasize here

    我們就可以對我們的演算法更有信心。

  • that all of these pictures were created

    我真的想要強調這一點:

  • by piecing together little pieces of everyday photographs,

    這些所有的圖片都是

  • like you'd take with your own personal camera.

    由日常生活照片的碎片 拼湊出來的,

  • So an image of a black hole we've never seen before

    就是那種用私人相機照出來的照片。

  • may eventually be created by piecing together pictures we see all the time

    我們之前從沒看過黑洞的相片,

  • of people, buildings, trees, cats and dogs.

    但最後黑洞的相片也許是由我們 常常看到的日常生活照片拼湊出來的:

  • Imaging ideas like this will make it possible for us

    人像、建築物、樹木、貓、狗等等。

  • to take our very first pictures of a black hole,

    這些成像方法讓我們能夠

  • and hopefully, verify those famous theories

    拍攝出黑洞的第一張相片,

  • on which scientists rely on a daily basis.

    我們同時也希望 能夠驗證那些著名的理論,

  • But of course, getting imaging ideas like this working

    那些科學家平常所依賴的理論。

  • would never have been possible without the amazing team of researchers

    當然,提出這些成像的方法與理論,

  • that I have the privilege to work with.

    沒有一個驚人的研究團隊 是不可能達到這種成果的,

  • It still amazes me

    我很榮幸身為這個團隊的一員。

  • that although I began this project with no background in astrophysics,

    我對這件事感到驚異:

  • what we have achieved through this unique collaboration

    雖然我沒有任何天文物理的背景 而加入這個專案,

  • could result in the very first images of a black hole.

    我們透過這獨特的合作所得到的,

  • But big projects like the Event Horizon Telescope

    能夠獲得第一張黑洞的相片。

  • are successful due to all the interdisciplinary expertise

    但是像「事件視界望遠鏡」 這樣的大專案,

  • different people bring to the table.

    多虧有跨學科領域的專業知識而成功,

  • We're a melting pot of astronomers,

    不同的專家共同合作着。

  • physicists, mathematicians and engineers.

    我們像是個熔爐,集結了天文學家、

  • This is what will make it soon possible

    物理學家、數學家和工程師。

  • to achieve something once thought impossible.

    這就是我們讓不可思議的事情

  • I'd like to encourage all of you to go out

    快速實現的原因。

  • and help push the boundaries of science,

    我很想鼓勵大家

  • even if it may at first seem as mysterious to you as a black hole.

    去協助推動科學的前沿,

  • Thank you.

    即使第一步可能像黑洞那樣神秘。

  • (Applause)

    謝謝大家。

In the movie "Interstellar,"

譯者: Debra Liu 審譯者: Wilde Luo

Subtitles and vocabulary

Click the word to look it up Click the word to find further inforamtion about it

B1 US TED 黑洞 影像 望遠鏡 相片 拼圖

【TED】凱蒂-布曼:如何拍出黑洞的照片(How to take a picture of a black hole | Katie Bouman)。 (【TED】Katie Bouman: How to take a picture of a black hole (How to take a picture of a black hole | Katie Bouman))

  • 107 7
    Zenn posted on 2021/01/14
Video vocabulary