Subtitles section Play video
If you were to take any everyday object, say a coffee cup, and break it in half,
如果你拿起任何日常生活的物品,比如說一個咖啡杯,把它分成兩半
then in half again, and keep carrying on, where would you end up?
然後再分成兩半,一直進行下去,最後會變成甚麼樣呢?
Could you keep on going forever?
你可以一直分割下去嗎?
Or would you find a set of indivisible building blocks out of which everything is made?
或是你會發現一組構成所有物品的不可分割的建構塊呢?
Physicists have found the latter- that matter is made of fundamental particles, the smallest things in the universe.
物理學者發現了後者 — 也就是物質是由基本粒子組成,粒子是宇宙中最小的東西。
Particles interact with each other according to a theory called the “Standard Model”.
根據「基本模型」理論,粒子之間互相影響。
The Standard Model is a remarkably elegant encapsulation
標準模型非常優雅的概括了
of the strange quantum world of indivisible, infinitely small particles.
不可分割的無限微小粒子的神奇量子世界。
It also covers the forces that govern how particles move,
它也涵蓋了控制粒子移動
interact, and bind together to give shape to the world around us.
互相影響與鍵結在一起給予我們周遭世界外形的作用力。
So how does it work?
所以它是怎麼運作的?
Zooming in on the fragments of the cup,
我們放大來看這個杯子的碎片
we see molecules, made of atoms bound up together.
我們看到由原子鍵結在一起的分子
A molecule is the smallest unit of any chemical compound.
分子是任何化合物的最小單位。
An atom is the smallest unit of any element in the periodic table.
一個原子是元素週期表上任何元素的最小單位。
But the atom is not the smallest unit of matter.
但原子不是物質的最小單位。
Experiments found that each atom has a tiny, dense nucleus,
實驗發現,每一個原子都有微小、緊密的原子核
surrounded by a cloud of even tinier electrons.
周圍圍繞著一團更小的電子。
The electron is, as far as we know,
電子,據我們所知
one of the fundamental, indivisible building blocks of the universe.
是宇宙中不可分割的基本建構塊之一。
It was the first Standard Model particle ever discovered.
它是第一個標準模型中被發現的粒子。
Electrons are bound to an atom's nucleus by electromagnetism.
電子透過電磁作用與原子核鍵結。
They attract each other by exchanging particles called photons,
它們透過交換「光子」這個粒子來相互吸引
which are quanta of light that carry the electromagnetic force,
「光子」是攜帶電磁力的光的量子
one of the fundamental forces of the Standard Model.
是標準模型的基本作用力之一。
The nucleus has more secrets to reveal, as it contains protons and neutrons.
原子核中還有更多秘密,因為它含有質子跟中子
Though once thought to be fundamental particles on their own, in 1968
儘管曾經被認為兩者都是基本粒子,西元 1968 年
physicists found that protons and neutrons are actually made of quarks,
物理學家發現質子跟中子其實是由夸克組成
which are indivisible.
夸克才是不可分割的。
A proton contains two “up” quarks and one “down” quark.
一個質子包含兩個「上夸克」跟一個「下夸克」。
A neutron contains two down quarks and one up.
一個中子包含兩個「下夸克」跟一個「上夸克」。
The nucleus is held together by the strong force,
原子核是透過強大的作用力結合在一起
another fundamental force of the Standard Model.
是標準模型中的另一個基本作用力。
Just as photons carry the electromagnetic force,
就像光子帶有電磁力
particles called gluons carry the strong force.
一個稱為「膠子」的粒子帶有強力。
Electrons, together with up and down quarks,
電子連同上下夸克
seem to be all we need to build atoms and therefore describe normal matter.
似乎是我們建構原子所需的一切,並形塑了一般的物質。
However, high energy experiments reveal that there are actually six quarks–
然而,高能量實驗顯示,其實有六種夸克
down & up, strange & charm, and bottom & top
上夸克與下夸克、奇異夸克與魅夸克、底夸克與頂夸克
- and they come in a wide range of masses.
而且它們質量相差甚大。
The same was found for electrons,
在電子也有相同的發現
which have heavier siblings called the muon and the tau.
電子也有質量較重的兄弟,稱為「渺子」跟「濤子」。
Why are there three (and only three) different versions of each of these particles?
這些粒子為什麼個別會有三種(也只有三種)不同版本?
This remains a mystery.
這還是個謎。
These heavy particles are only produced, for very brief moments, in high energy collisions, and are not seen in everyday life.
這些重粒子只有在瞬間高能量碰撞中才會產生,而且日常生活中看不到。
This is because they decay very quickly into the lighter particles.
這是因為它們很快就會衰變為較輕的粒子。
Such decays involve the exchange of force-carrying particles,
這種衰變包括帶作用力力子的交換
called the W and Z, which – unlike the photon – have mass.
稱為「W 玻色子」與「Z 玻色子」 — 與光子不同 — 具有質量。
They carry the weak force, the final force of the Standard Model.
它們帶有弱力,標準模型的最後一個作用力。
This same force allows protons and neutrons to transform into each other,
相同的力量使質子與中子互相轉換
a vital part of the fusion interactions that drive the Sun.
這是驅動太陽最重要的融合交互作用。
To observe the W and Z directly,
為了直接觀察 W 玻色子與 Z 玻色子
we needed the high energy collisions provided by particle accelerators.
我們需要透過粒子加速器提供高能量的碰撞。
There's another kind of Standard Model particle, called neutrinos.
標準模型粒子中還有另一種粒子,「微中子」
These only interact with other particles through the weak force.
這些只透過弱力來與其他力子交互作用。
Trillions of neutrinos, many generated by the sun, fly through us every second.
每秒都有數以億萬計的微中子從我們身邊飛過,許多都是由太陽生成的。
Measurements of weak interactions found that there are different kinds of neutrinos
弱交互作用的測量結果發現,微中子也存在
associated with the electron, muon, and tau.
與電子、渺子、濤子相關的不同微中子。
All these particles also have antimatter versions,
這些粒子也都有反物質版本
which have the opposite charge but are otherwise identical.
它們有相反的電荷,但其他地方是相同的。
Matter and antimatter particles are produced in pairs in high-energy collisions,
物質與反物質粒子在高能量碰撞中成對產生
and they annihilate each other when they meet.
而當他們相遇時互相抵銷。
The final particle of the Standard Model is the Higgs boson
標準模型中最後的粒子是「希格斯粒子」
– a quantum ripple in the background energy field of the universe.
一種宇宙的背景能量場中的量子漣漪。
Interacting with this field is how all the fundamental matter particles acquire mass, according to the Standard Model.
根據標準模型,所有的基本物質粒子透過與這個能量場的交互作用獲得質量。
The ATLAS Experiment on the Large Hadron Collider is studying the Standard Model in-depth.
大型強子對撞機的超環面儀器實驗 (A Toroidal LHC ApparatuS, ATLAS) 深入研究標準模型。
By taking precise measurements of the particles and forces that make up the universe,
透過對組成宇宙的粒子與作用力進行精準測量
ATLAS physicists can look for answers to mysteries not explained by the Standard Model.
超環面儀器物理學家可以找到標準模型無法解釋的神秘問題的答案。
For example, how does gravity fit in?
例如,怎麼加入重力的概念?
What is the real relationship between force carriers and matter particles?
帶作用力粒子和物質粒子間真正的關係是甚麼?
How can we describe “Dark Matter”,
我們要怎麼描述「暗物質」
which makes up most of the mass in the universe but remains unaccounted for?
許多宇宙中的質量都是由暗物質組成但還無法解釋?
While the Standard Model provides a beautiful explanation for the world around us,
雖然標準模型提供了一個很好的方法來解釋我們周遭的世界
there is still a universe's worth of mysteries left to explore.
宇宙中還是有多如牛毛的奧秘等著探索。