Inthiscase, wecanseethatyouknow, wehave a rectangleasslightlywiderthanitishigh.
Sohowcanweget a squareintodestroyanger, usingjust a compassandstrangethatliesonthisbaseandthentouchusthetwosidesasmathematiciansbeforewestartonactuallyconstructingsomething?
A goodquestion.
Usisdust.
Thisexists, youknow?
Howdoweknowwecangetexactly a squareinsteadofjust a rectangle?
Andwhentheheightisthatzero, wehavethefulllengthoffthebase, whichmeanswe'regonnahave a straightlinehereandwhathappensatthispointofintersection?
Well, atthispointofintersection, weknowthattheheightofthewreckedangerisrequested a whiffofftherectangular, andsothatgivesus a squaresowecando a squaresowecando a square.
Andas I mentionedearlier, wecancompareittothisdiagramontherightandwecanseethatwearereasonablyclosetowhatthecompleteanswersMethodonewhereweconstructedthetwolines, theintersecteachothertofindtheheightoffthesquare.
Admitittowhereweforced a squaretogetintothistriangle.
Pointsandthevertexoffthistriangleisthatthistreepointswe'llform a straightlinesowecouldconnectupthistreepointsandseewhereitintersectstheothersideoffthetryanger.
Andthenfromhere, weknowifwedroptheperpendicularandwedroppedtheparallelline, thatwillgiveus a square.