Andingeneral, weneedinthisexampleweneed K minusonetimes t cuts.
SoitmeanssometimesKate, mynewfuntimes T cartsarenecessaryintheFurysaystheycame.
I knewSwanTimes.
T cutsalwayssuffice.
Thereisalways a waytocutthenecklace.
ItcameinforeignTimes T placesandthendividetheresultingintervalsinTokcollections, andeachcollectionwillcontainexactlythesamenumberoffbeadsoffeachtime.
Sothisismorecomplicated, and I'm notgoingtodescribetheproof, whichusessometoolsfromcontinuousmathematics, specificallyfromapology.
Butletmejustsayit.
Thefirstapeis a simplestay.
Ifwenovalidityoffthisassertionoffthetheoryfor K onefiefsandteatypesandweknowitalsofor K twothief's andhetypes, thenitimpliesthatitistruefor K onetimes K twoThiefNTtypes, andthisisactuallynotdifficult.
Thisright, soit's kindofluckythatwehavethesaywaytoegets a resultforthreetimesfivefromtheresultforthreeandtheresultforfivebecause a resultforthreeand 45 wecangetyouuseexistapology, whichseemstobenecessarywhenthenumberoftypesoffbeadsisthatleastthreeright?
Youknow, thetotalnumberofelementaryparticlesintheuniverseissomethinglike a tentwitheight, andit's reallyeasytoformulate a verysimplecombinatorialproblemwherethenumberofpossibilitieswillbemorethan 10 toes A.
Justbecauseoftenthingsgrowexponentiallyintermsofftheparametersmuch, muchlonger, longeragowherewethinkabouthaving a babyandintervalrepresenting a cake.