Andsoitwas a reallygoodOCRapplicationwhereyouweretakingsometypeofanimage, convertingitintothetaxsaiditwasassociatedwithitandthenforhimfunctionallytranslatingthatintoanotherlanguage.
And I thinkthat's veryimportantforpeopletorecognize.
OCRisnotjustokay, I'vegot a document, I'm scanningitanditconvertsitintothetextform.
Peopledon't actuallydothatverymuchanymore.
Peoplehave a supercomputerintheirpocketcalled a mobilephone, andtheywanttobeabletousethatforOCR.
Andsowhen I get a graphlikethis, I needtobeabletodowhat's calledFinalizationandbynder.
Izationmeansthat I'm goingtoturnthisfrom a richpanoplyofvaluesfrom 0 to 2 55 tojustzeroin a one.
Andsoyoucanprobablyseefromthisgraph.
Thiswillbemynewone.
Thiswillbemynewzero.
Andsothere's a numberofmethodsthatactuallydobynderization, themostfamousofwhichareprobablytheoutSueandthentheHitleratallmethod.
I thinkthat's from 1986 outs.
Whomightbefromthesametimeframe.
Okay, sowhat I'vetalkedabouthereis a simplification.
What I'vedoneisgivingyou a globalbynderizationmethod.
Therearealsolocalmethodsthatwillhandle, Forexample, whenyou'vegotBlurwhenyou'vegot a littleyouknow, Joyner's etcetera, lookatthosebrieflyandkindofshowyoutheimpactthatwillhaveonthetextyouget.
Thisisdifficulttokindofshowbydrawing, but I'lldomybest.
Supposeyou'vegot, forexample, theletter t hereandarounditissomenoisethatyou'vecapturedintheimage.
Andsothisisanimageof a letter T.
If I dosometypeof a globalthreshold, what I'llgetoutofthisissomethingthatlookslikethis, andsothat's startingtolooklike a T.
Butif I do a betterjobwiththis, if I dosomelocalfiltering, sothisis a globalthresholdandthisis a localfinancial, that'lltakingthatintoaccounts, I maybeabletodosometrimmingsothatthe T looksmorelikethis, andthat's actuallywhat I wantoutofthis.
Let's considerthatdonescienceorotherpeopleworkingonthisRaySmithhimselfhasworkedonthisotherpeopleinthevariousopticalcharacterrecognitionZorroseeourvendors, whichincludeAbby, whichincludenuance, whichinclude a widevarietyofotherfolksovertheyearstheywillbeabletoascertainbasedonthecharacter, said a fairlylargecharactersaid.
Usuallywhatlanguagesiswith a lotofconfidence, there's also a default.
Ifyoudon't knowwhatitisandyoudon't have a lot, youstartoffthinkingit's English, right?
Sothat's kindof a commonlanguagethatyoustartwithoryouthinkofthelocallanguage.
I havetoactuallydothedownstreammatchingofthosecharacterstowhattheyare, andthenalsopotentiallyfindingoutwhatfontitissothat I canreproducethisinthecorrectfontforthefinal.
Andsoif I knowthatit's English, I'm goingtotrytodoanythingfromsomethingasineleganceaspatternmatching.
Patternmatchingisbrutalbecauseif I don't havetherightfont, itmightnotbe a goodmatch.
Soif I'vegotthislittleteacher, theideal t that I havemightbethis.
If I knowwhichfontitis, I mighthave a muchbetterteathatwillmatchagainstthisonemuchbetter.
So a lotoftradeoffsherewhen I actuallydotheclassificationandwhen I actuallydothefontidentificationandmostmodernsystems, thereis a metastructurearoundthatthatallowsmetospeculateonwhichcharactersaiditmightbe, andthenalsoonwhichfontitmightbewithinthosecharacters, so a largecase, itmightnotjustdeclassificationbyalphabet.
Markovmodelsverygoodmodels, alsofornaturallanguageprocessingspeechrecognition, thosetypesoffieldswhereyouhave a limitedalphabetandyou'retryingtodomatchingforthat.
Moremoderntechnologiesnowwoulduse S PM's ADAboostboostingtechtechnologiesforclassification, andnowincreasinglydeeplearningindeeplearningisactuallybeingappliedtothisfieldaswell.
Nothingmagicalaboutdeeplearningotherthanthefactthatwe'reableto, becauseofthearchitecture's ofmodernprocessingequipment, wereabletoaddanotherlayertowhatwedoinartificialneuralnetworks, andthatgivesus a lotmoreplasticity.
It's kindoflikewhat a physicistdoeswhenthey'retalkingaboutstringtheory.
Ifweactuallyliveinan 18 or 22 dimensionaluniverse, wecanprobablyfitbeforeweseeontotheirin a numberofwaysandproveourpoint.
There's a numberofwaysofmappingthoseWecountondeeplearningtokindoftrainthat, andit's allaboutthetrainingset.
And I thinkthat's animportantpart, andthat's what I'm goingtojumptonextisactuallytalkingaboutthetrainingsetthatwe'vegotandhowweusethattobeabletoassesstheclassificationpartofOCR.
SoSo a quickrecap.
We'vegot a vinearisedimagefromthatimage, weformconnectedcomponents.
Withthat, we'llleavethatasidethatcomplexityasiderightnowandjustsaywe'vegotsometypeof a subsetofcharactersthatbelongedtothatalphabet, andnowwewanttoclassifythem.
Andso, forclassification, wewillhavethefollowing.
We'vegotthattea, which I'm usingasanexamplehere.
Andas I said, wemayhave a fontthatdefines a tealikethis.
Thetealikethis, a t thatlookslikethis a maybe a moregraphical t thatlookslikethis, even a T ifwe'vegottohavetoconsidersmallteasatthesametime, andwhatwe'lldoissomekindof a matchagainsttheseeitherpatternmatchingbasedon a trainingsetcenter, andwemightget a figureofmeritforeachofthesethingsthatwillvarydependingonthegoodnessoffitforthisinthemodelAndasyoucanseefromthis, I puttheseinorder.
If I nowextendthisouttothewholewordwhich I used, whichwasthere, I mayhavethecharactersfromeachofthesealphabets.
Sonow I'vegotanage.
I'vegotanytwiceandareinany.
I'm goingtoget a similarsetofnumbersfromeachofthoseandtrytocombinethosetwo.
Figureoutwhichfundfamilydid.
Solet's let's do a littleexamplehere.
Let's saythatforthenextone I gotthesedatahere, and I'm goingtojustmakeupsomenumbersforthepointofillustrationhere.
Foreachoftherestoftheseagain, thesearejustexamplesofwhat I gotforthe T h e r n e, andthegoodnessoffit I gotforeachofthosemodels.
Now, what I candois I canusepopulationstatisticsoutofthistofindoutwhichfontitactuallyfits.
If I sumtheseup, which I'm gonnadoherequicklyinmyhead 3.85 forthismatchagain, I woulddividethatbyfive, whichwouldgiveme a valueof 50.79 which I guessismymeanvalueforthis.