Sothatistwofor 8 16 32 64 1 28 to 56 5 12,024 2048 minusoneis 2000 and 47.
SothesearecalledMayorsentnumbers.
Okay.
Ah, nde.
Weputin a primehereandbangattheotherend.
Weget a prime, a prime, a primeat a pride.
Um, thisone.
Okay, thisis a bittricky, actually, Thisone, it's hardtotellwhetheronit's a prime, butatfirstsight, thisseemstobe a prettygoodwayofgeneratingprimedandactuallyis a verygoodwayofgeneratingprimes.
I'm notsuperfamiliarwithhowanimationshows a maid, but I'veseenbitsandpieces, and I knowtheseguysareobviouslysittingandwritingscriptsinthewriter's room.
Otherpeopleactuallydothedrawingsandtheanimations.
ThisisnotJemainetothestoryinanyway.
Sodidtheyjustputlike a noteintheresaying, Ifthere's a gravestone, makesureyouputthisnumberontheside.
But I thinkeversincethenthey'vebeenverycarefulwithwhattheirmathematicalinstructionsare.
Very, verycarefultocheckthemafterwardsaswell, nodoubtinanepisodecalledtheHonking, wherethefuturearmorcrewgooffto a spookycastleforthereadingof a willonit's all a bitscaryandthey'rewalkingthroughthiscastleandthensuddenlybloodappearsonthewar.
0101100101 Okay, sofinalsequenceinblood, it's onthewallall a bitscary.
Solet's findoutwhatthespinalsequencesindecimal.
Wegotit.
1248 16 32 64 1 28 to 56.
Okay, ifweaddtheseupabout 513 57.
Okay, thatequals 357 357 isnot a particularlyinterestingnumber.
Asfaras I knowitdoesn't screamatisbeing a perfectnumberorworseendprimeoranyofthoseinterestingnumberswecomeacrosssometimes.
ButinBender, therobotturnsaroundandheseesthenumberreflectedin a mirrorasthebuyingnewdigitsareswitchedaround.
Solet's have a lookatthisbinarysequence.
Now, ifwereversethedigits, wenowhave a 10 10011010 Okay, Sowecan I translatethatbinarysequencebackintodecimal?
We'regoingtoknowfour's We'vegot 8 16 32 64 with 1 28 No.
2 56 ison a 5 12 twoand 8 10 10 16 26 26 1 2154 1 54 and 5 12 is 666 Thenumberofthedevil, thenumberofthebeastas a bender.