For a bitstringthenumberofpossiblecombinationsofeightbits.
It's twotothepowerofeight.
Thisistrueforbothclassicalandquantumcomputers.
Thedifferenceis, whatcan a quantumcircuitconsiderallinonepass?
Andwhatcan a classicalcircuitconsiderallinonepass?
A classicalcomputerin a classicalcircuitcanconsidertwotimesinbitsstatesin, likeonepassthroughthecircuit.
Sowhenyou'rewhenyou'reapplying a logicgatetosomething, itcanonlyconsiderthetwostatestimesandbits a quantumcomputercanconsiderlogicallyinonepassthroughthequantumcircuit, twotothepowerof n bitsstates.
Anditcoulddothislogicallywith a combinationofbitsandgatesandallthat.
Thatwillhitthatnumberin, like, a decadeorless, whoknows?
So, um, that's what's excitingaboutQuantumPeter's So, umsooverthatanswersthatquestion, butitalsoleadsusintothenextone, whichishowisthisusefulWhatdo I dowiththis?
Can I get a jobwiththis?
Um, I thinktheanswertothatisit's probablywrongattitude.
Andnow I'm gonnajustmake a functionthatwilldo a bunchoflinesofcodethatwe'regonnafindourselvesneedingtowritemanytimeswhenwe'rejustkindofplayingaroundandtryingtoseewhatchangesaremade.
Um, and I knowin a notebookyoucould, like, goup, changeonethingandthenrunitagain.
But I kindofatleastthisiswhat I didwhen I waskindofplayingaround.
I actuallywantedtosavethechangesthat I meant I madealongthewayjusttokindofseehowhowthingswereactuallyimpactingthings.
Soanyway, finddukejob, Uh, andthenthiswilltake a circuit, andthenwe'rejustgoingtodioum, basicallyrunthetwojobsonthetwoSims.
Rather.
SothefirstjobwillbecutedotExecute.
Wewillexecutethecircuit.
Backendwillbestatevector.
I'm justgonnadothis.
Sayfactors, simulator.
Wedon't needshotsbecausethatis a relevantinthiscase.
Actually, whatdoyouexpectthistolooklikebefore I doit?
But, um, I justforgotanyway, SothisiswhattheblockspherelookslikewithourCubanvectorsonit.
Andsowhenwegototake a measurement, whathappensisthisvectorit's goingtocollapsetoeither a zeroor a onewithrespecttotheprobability, whichisall a functionofwhatiswhereisthisvector?
Sointhiscase, it's completelypointingtozero.
Everytimewetake a measurementhere, itwillalwaysbe a zero.
Andwecanobviously, um, wecouldplotthat, but I thinkit's kindofsillytodothedistribution, butwecoulddoitsoplothistOh, Graham, umAndthencounts, uh, legend.
Um, justsayoutput.
SoYes.
Sothedistributionisalways a 00 becausethiswillalwayscollapse 200 But, um, whatdoyouWhatdoyouthinkhappensifwe'd put, umLet's a cubitone.
Ifyouwouldaskmetoconceptuallythinkofthismaybegivenenoughtimeand a pencilandpaper, I couldhavecomeupwiththisexactcombinationisbeingtheonlypossibilities.
Um, buteventhisthisisnotthisnotthatconfusing.
Thisislikesimplemath.
I mean, it's 50 50 oddswiththreecubits.
Soanyway, mentally, eventhat's challengingforme.
Buttheplotthickens.
So, um, I don't wanttoshow, likealltheexamples I justWe'd behereforever.
I have a tonofexamplesinthetextbasedversionofthistutorial.
Soifyouwanttocheckhimout, goforit.
Butwhat I reallywanttoshowyouortherotations.
So, forexample, um, I'm gonnajustcopyandpastethesein.
I don't reallyseeanyreasontokeepwritingoutlinedbylines.
SoOkay, um, I guessthefinalpoint I wouldmakeislike, youknow, prettymuchallofthesegatesarecombinationsofobviouslygotsuperposition, andthenyougotentanglementwiththeconceptofcontrol, andthenyou'vegotrotationsonanyaccess.
So, forexample, canyouhave a controlledrotationalongaccess?
Why, yes.
Sohereare I listedtheminthetextmessageseditorial, and I mightjustcopyandpasteatleastthislinkintheYouTubedescription.