Sousuallywhenwehave a computerprogramwethinkoftheunderlyingsetofinstructionsasanalgorithmgivensomeinputs.
It's goingtotellyoukindofhowtomake a decision.
Ifanalgorithmisjustlike a preciseprocedurefordoingsomething, thenanexampleis a procedurethat's soprecisethat a computercandoitatllamaLord 10 91 askshowbofadidtheMayansdevelopedtheconceptofzero?
Everybody's got a zerointhesensethateverybody's gottheconceptofnothing.
Themathconceptofzeroiskindoftheideathatnothingis a number.
Theheartofitishowdodifferentculturesincorporatezeroas a number.
I don't knowmuchaboutthemayanexampleparticularlybutyoucanseedifferentcultureswrestlingwith.
Isit a number?
WhatmakesitnumberthreeMathisdecidedkindofcollectivelyisthatitisusefultothinkaboutitas a numberbecauseyoucandoarithmetictoit.
Itgivesmathematicians a certainkindofauthorityandyoucandefinitelyseethatbeingabusedandthisistruemoreandmorenowthatdatascienceiskindoftakingovertheworldbuttheflipsideofthatisthatmathisbeingusedandusedwellaboutfiveyearsago I gotobsessedwithredistrictingandgerrymanderingandtryingtothinkabouthowyoucouldusemathmodelstobetterandfairerredistricting.
I honestlyhavenoideawhatmathresearchlookslikeandall I'm envisioningis a dudewith a midatlanticaccentnarratingoverfootageofguysinlabcoatslookingatshapesandlike a numberfouron a whiteboard.
Itlooksnothinglikethemathinschool, whichissortof a muchpolishedupafterthefactfinishedproductversionofsomethingthat's actuallylikeoutthereandmessyandweird.
SoDylanjohnkempsaysseriousquestion, thatsoundslikeit's not a seriousquestionformathematicians, scientistsandengineers.
012 andsoonrealnumbersoverhereandthenjustgivemethisnumberuphereandcallit I thatgivesme a buildingblocktogetanywhere.
Sonow I comeouthere, thiswillbelikethreeplustwo.
I so I isnowthebuildingblockthatcangetmeanywhereinspace.
Yes, everybridgeandeveryspaceshipandalltherest.
LikeyoubetterhopesomeonecouldhandleimaginarynumberswellatletClaraVinnyitsayshashtagmovieerrorsthatbuggedmetheseventhequationdownonthethirdchalkboardin a beautifulmindwaserroneouslyshownwithtwoextravariablesandanincompleteconstantboythatrequiressomezooming, I willsaythoughformeandlotsofmathematicianswatchingthemathinmoviesis a reallygreatsport.
Sowhat's goingonhereis I see a bunchofsums, I seesomepartialderivatives.
Thismovieaboutjohnnashwhoisactuallyfamousfor a bunchofthingsinmathworld.
Oneofthemislikegametheory, ideasandeconomics, but I donotthinkthat's what's ontheboardhere.
If I hadtoguess, I thinkwhathe's doingisearlier.
Veryimportantworkofhis.
UmthisislikeNashembeddingtheorems I think.
Sothisislikefancygeometry, youcan't tellbecauseitlookslike a bunchofsumsandsquiggles.
Wekindofneedthatbutwemaybedidn't havetocreate a symbolforitandcreatingarithmeticarounditandcreatelike a geometryforitwherethere's like a pointofinfinity.
And a leftoverpartthatiswellunderstoodatAbsasayswhatifBlockchainisjust a plotbymathmajorstoconvincegovernmentsVCfundsandbillionairestogivemoneytolowlevelmathresearch?
No, andhere's how I knowwe'rereallybadattellingtheworldwhatwe'redoing.
Andthenthere's thislikemyabsolutefavoritepartofthisisthelaughingcryingemojibecauseRileyisjustlikecrackingherselfuphereorRiley's I thinkreallysayingherehastodowithjustlikehowmuchthingscommute, right?
Soyou'reusedto A.
B equals B.
A.
That's whenthingscommute.
Andthenyoucansortofdomathwherethat's nottrueanymoreforlikeyouknow A B equals B.
A.
Times a newthingcalled C.
That's justnotthemathyoulearnedinschool.
Likewhatisthisnewthingandhowdoyouunderstandit?
Wellitturnsoutthisisthemathofthismodelhere.
Thisis a modelofwhat's callednilornilpotentgeometry.
Ifyouthinkaboutconstructingnotesthataregoingtosoundgoodto a mathematician, you'rejustdoingrationalapproximationstologarithms, transcendentalnumbers.
Againlikepienumbersthatcan't bemadeintoexactfractionsbutcanonlybeapproximatedinordertodecideonthedistancesbetweenkeyson a keyboardinordertomakeitsoundgood.
We'retryingtoapproximatesomethingthatis a numberthatcan't beexactlycapturedwithfractions.
There's a lottosayaboutthemaththat's inmusicAstotherestofyourproposition, I willjusttrustyouonthatatdrkuhowdoesmathmakesense?
Andsothemathpeoplecomealongandsay, well, whatif I putindifferentkindsofnumbers, Whatis 6/-2?
Butthat's whatmathematiciansdo.
Wetake a systemandwejustliketrytoputinotherkindsofinputsthatitwasn't expecting.
Youteachmehowtoaddandthen I comealongand I wanttoaddshapesandyou'relike, youdon't addshapes, youaddnumbers.
And I'm like, butwhy?
We'regoingtodoiteverytimewecan't bestopped.
Whatam I evergoingtoneedthis?
Lookingatyourscreenshotand I thinktheanswerisnever, youarenevergonnaneedthisatNeilvonfirst a questionformathematicians, zeroandoddorevennumber, evennumberisanynumberthatcanbewrittenastwotimes K where K is a wholenumber, zeroisevenifzerois a wholenumber, zeroholenumberandyougetdown a rabbitholezeroisevenbecauseit's convenientforsomethings, it's definitelydifferentfromtherestofthenumbers.
She's a greatmathematicianhadkindof a cultfollowing.
Hermouthisgreat.
Herideasaredeep.
Shelikewasverypowerfulbuilderofabstractionand I thinkyoucan't gowronglearningaboutEmanotherMathisfullofthesereallycolorfulcharactershavinglikeoutofcontrol.
Originalgreatideaswouldbegreat.
Wefiguredouthowtotelltheirstories a littlebetterAt J Hatch 17 says I have a questionformathpeople, ifthereareaninfiniteamountofpointsbetweenanytwopoints, butwecanstillwalkfromPoint A topoint B Dowewalkthroughinfinitepointstogetthere?
Howdowegetanywhere?
Thisisanoldanddeepquestion.
Theideathatmathismathismathandthatit's universalandthatit's allthesameandthenit's allfiguredouthides a lotofmess.