Fromearth, they'd look a bitbrighterinthenightskyenoughthatCereswouldbecomevisibletothenakedeye.
Unfortunately, thenightskyandhumaneyeswouldget a littlehardertofind, thankstotheotherplanets.
Plutonium, uraniumandneptuniumareradioactive.
Plutoniumanduraniumdohavenon-fissileisotopeswhichdecayslowlyandmainlyproduce a bitofheat.
A smalllumpofUranium's mostcommonandstableisotopewouldn't evenbehottothetouch.
Butifyoucollecteditinto a planet-sizeball, thetinyamountofheatproducedbyeachpartwouldadduptoheatuptheplanettothousandsofdegrees.
Itmightseemstrangethatsomethingthat's coolinsmallamountswouldbehotwhencollectedtogetherin a bigball, butthisisjust a consequenceofgeometryandthephysicsofradiatingheat.
So, a largeheat-producingobjectwillproducemoreheatthanitcanradiateawayuntilthatheatbuildsup, andtheobjectgetshot, hotenoughthatitcanradiateawayenoughheat.
Reallybigobjectscangetextremelyhotfromjust a tinyamountofheatproductionperunitofvolume.
Like, thesun.
A cupofthesun's coreproducesabout 60 milliwattsofthermalenergy.
Byvolume, that's aboutthesameheatproductionrateasthebodyof a lizard, andsubstantiallylessthanthatof a human.
In a sense, youarehotterthanthesun–there's justnotasmuchofyou.
But, weweretalkingaboutUranus, whichthereis a lotof, andwhichwouldgetreallyreallyhotifmadefromuranium.
Eventhemoststableneptuniumisotopeisfissile, so 237 Neptunewouldinstantlyundergo a runawayfissionchainreaction, convertingtheplanetintoanexpandingcloudofhigh-energyparticlesand X-rays.
Aroundfourhourslater, theshockwavewouldreach—andcompletelyobliterate—theEarth, strippingawayitssurfaceandeverythingonitandleavingbehind a moltenblob.
We'd havegottensimilarresultsforUranusandPlutoifwe'd insteadusedfissileisotopesofuraniumorplutonium, thoughas a bonus, Uranus' shockwavewouldreachanddestroyusaboutanhourfasterthanNeptune's,
There's a simpletakeawayfromallthis: Ifyouhave a choicebetweenisotopesandyou'renotsurewhichtopick, goforthemoststableone.