I meantheylookprettysimilaralloverandtherearepatchesthatareperfectmatches, butifyouslidethewholethingoverandaround, itwillnevercompletelylineupwithitself.
Again, patternslikethisthatgoonforeverandfeelliketheyshouldrepeat, butdon't arecalledquasiperiodic, but I neverreallyfeltlike I understoodthesepowerpatterns.
Likehowdoyoumakethem?
Howdoweknowtheydon't everrepeat?
I justhadtotakesomebody's wordforitthattheyworkedthewaypeoplesaytheydountilrecentlywhen I learnedthere's a hiddenpatterninsidepenrosestylings, a Pentagridandit's quitepossiblythebestwaytounderstandpenrosestylings, atleast.
It's whatfinallyhelpedmefeellike I understoodthem.
Here's howyoufindthePentagridstartwith a singletileandhighlightneighboringtileswhoseedgesareparallelandtheirneighbors, andyouendupwith a wobblyriboftilesthatsnakesaround a bit, butoverallfollows a straightpath.
Andifyoupickanothertilewiththesameorientation, youcanmake a ribbonthat's paralleltothefirstandyoucankeepgoing.
Here's a wholesetofparallelribbons.
Ofcoursewecouldhavestartedwiththeotheredgesofouroriginaltileandendedupwith a differentribbonoftilesandthere's a wholeparallelsetoftheseribbonstoinfactjumpingahead a littlebitifwemake a slightlymorecomplicatedversionofthepenrosetilingandcolorthetilesbasedonhowtheirori, yousee a wholemessofribbonsjumpoutatyou.
Theseribbonsarethekeytounderstandingpenrosetilingbecausetheribbonsform a pentagramandwhatexactlyis a Pentagrid.
Ifyoutake a regulararrayofparallellines, youcancopyandrotateit.
Soitforms a grid, you'reprobablymostfamiliarwith a squaregrid, wheretwosetsoflineshavebeenevenlyrotatedfromoneanotherandintersectat 90 degrees.
Youmightalsohaveseen a triangulargridwherethreesetsoflineshavebeenevenlyrotatedandintersectat 60 degrees.
Andifyoucreate a gridwithfivesetsoflinesevenlyrotatedfromeachotherandintersectingateither 36 or 72 degrees.
Allyouhavetodoisstartwith a pentogridandthenateverypointwheretwolinesintersect, youdraw a tileoriented, sothesidesofthetilesareperpendiculartothetwolines.
Thiswayatthenextintersection.
Alongtheline, thesidesofthattilewillbeparalleltothesidesofthefirsttileandthesameatthenextintersectionandsoonandyoucanslidethemalltogetherinto a ribbonandifyoudothesameforthenextlineupinthepentogrid, yougetanotherribbonandanother.