Subtitles section Play video
Euclidean geometry, dating back to around 300 BC with the Greek mathematician Euclid,
歐幾裡得幾何的歷史可以追溯到公元前 300 年左右,由希臘數學家歐幾里德提出,
forms the foundation of geometric understanding through his work "Elements."
透過他的著作《幾何原本》奠定了幾何理解的基礎。
A central aspect of Euclidean geometry is the parallel postulate, stating that
歐幾里德幾何的一個核心面向是平行公設,即
parallel lines never intersect. However, a historical misinterpretation, particularly
平行線永遠不會相交。然而,歷史的誤解,特別
in the early study of geometry, involved the logical fallacy of denying the antecedent.
是在幾何學的早期研究中,涉及否認前因的邏輯謬誤。
This fallacy manifested in the incorrect belief that if two lines are not parallel,
這種謬誤表現為錯誤地認為兩條線不平行則
they must intersect, neglecting the possibility of skew lines in three-dimensional space,
必定相交,而忽略了三維空間中斜線的可能性,斜線
which are non-parallel yet do not intersect as they lie in different planes.
雖然不平行但不相交,因為它們位於不同的平面。
This early misconception underscores a limited understanding of geometry,
這種早期的誤解強調了對幾何學的有限理解,
primarily confined to two dimensions.
主要局限於二維。
The later development and formalization
後來
of three-dimensional geometry clarified this misunderstanding.
三維幾何的發展和形式化澄清了這個誤解。