Doweknow a functionsothatitsderivativeisjust a constantofitsoriginal?
I thinkso.
Wedo, right?
Ontheside, letmejustshowyou.
If I startwith y equalsto, well, if I have, let's say, e tosomepowertimes x, well, inthiscase, weuse t, bytheway, forsecond-order, use t.
Let's saywehave e tothe 3t.
Well, ifyoudifferentiatethat, youget y' andyouknowthisisgoingtogiveyou e tothe 3t, thefunctionpartstaysexactlythesame, butthechainrulesays I willhavetomultiplyby 3, right?
Soletmeputitdownrighthere, right?
Andyousee, this 3 stays, andthisisjusttheoriginal, so 3 times y, right?
Andlikewise, I candoitagain. y'' isgoingtobe, wewillkeepthis 3 times e tothe 3t, butthenwemultiplythis 3, right, forthederivativebythechainrule. 3 times 3 is 9, and e tothe 3t istheoriginal.
Andyousee, wheneveryouhavean e tosomepower, thefirstderivative, thesecondderivative, theyarejustgoingtobetheconstantmultipleoftheoriginal, right?
Sowhatthisistellingmeisthatthiswillsuggest, letmejustputthisdown, thissuggeststhatforthefunction, weshouldhavetheform y equalsto e tosomepowertimes t.
I don't knowwhatthisnumbershouldbe, earlier I justused 3, right?
Soingeneral, letmeputdown r times t.
Andonceagain, forthesecond-ordersituation, weusuallyuse t becausethereare a lotofapplicationsthatimposetimeandthingslikethat.
Anyways, thisismystarting.
Firstofall, webeginbysaying y isequalto e tothertpower, andtheideaisthat I'm justgoingtogoahead, differentiatethistwice, andthenplugin.
Allright, y' isgoingtobe e totherttimes r, letmejustput r inthefront, andthen y'' isgoingtobe, thisrighthererepeats, so r e rt, butthenwemultiplybyanother r, whichwillbe r times r, whichis r².
Andnow, letmeputallthisintotheircorresponding.
Herewehave a, y'' is r² e tothert, andthenweadditwith b, soweputonplus b, y'' is r e tothert, andthenwecontinue, plus c, y is e tothert, andthisrighthereisequalto 0.
Andnow, canwekindofsqueezeout a condition?
Let's seewhatcanwedo.
Everytermhas e tothert, sowecanfactoritout, ofcourse, e tothert, andthatwillgiveusar² plusbrplus c equalsto 0.
Allright, thisisanexponentialpart, right?
Exponentialfunction e tothesomething.
Thisrighthere, weknow, isnever 0, isn't it?
Never 0, letmejustspellitoutmuchbetter.
So, whenwehavethisquantitytimesthatquantity, since e tothertisnever 0, soyoucaneitherdivideitout, oryoucanjustforgetaboutit, becausewejustwanttofocusonthis.
Sothatmeanswemusthavethispart, wemusthave, letmejustwriteitdown, wemusthavethesituationthatar² plusbrplus c equalto 0.
Infact, thisrighthereistheconditionthatweneed, becausefromhere, thisisprettymuchjust a quadraticequation, isn't it?
Quadraticequationintermsof r.
Fromhere, wecansolvefor r, andwecanjustplugintothe r here, andwecangeneratethebuildingblocksofthesolution.
And I'llshowyouguyswhat I meanbythat.
Andbefore I showyouguysanexample, letmetellyouguysthatthisequationherehas a name.
Thetruthis, wemultiplythefunctionpartby C1 and C2, sothisrighthereis C1, andthisrighthereis C2.
So, letmejustdemonstratethisrighthereonthesideforyouguysrealquick, becausenow, yousee, when I multiplythisfunctionby C, soletmejustputon C inblacklikethis, guesswhat?
I willjusthavetomultiplyeverythingby C, isn't it?
Sothisrightherewillendupwith C, C, C, C, C, C, C.
Andthen, prettymuchthisterm, we'llnowhave C righthere, andthisfunctionhere, thisparthere, has a C hereaswell.
Thisrighthere, justmultiplyby C, right?
We'rejustpluggingeverythingaccordingly.
Guesswhat?
When I havethis C here, I willstillendupwith 0 ontheleft-handside, ofcoursestillequalto 0.
Thepointofthatistoshowyou, thesearetheplaceswhere C shouldbe.
C1 and C2 arejustthemultipleofthefunctionpart.
C1 and C2 arejustthemultipleofthebuildingblocksofthesolutions.
Imagineif I'm differentiatingthe y, well, I justhavetodifferentiatethefirstandthesecond.
Differentiatethisanddifferentiatethat.
Doitagain, doitagain, doitagain.
Plugin, plugin, plugin.
Youget 0 isequalto 0 onceagain.
Sothisistheidea, justtosummarizethisrealquick.
Allyouhavetodo, justtokeepeverythingsimple, getthecharacteristicequation, solvethequadraticequationin R.
Ifyougettwodifferent R values, well, e tothefirst R times T, e tothesecond R plus T, andbesureyoumultiply C1 and C2 correspondingly, andthenaddthemtogether.
Thisisthegeneralsolution.
Thisisthefirstsituation.
Youshouldwatchmynextvideo.
I willshowyouwhathappenswhen I havethesetwo R valuesbeingthesame.
Inthisvideo, I'llshowyouguyshowtoapproachtosolve a second-orderlineardifferentialequationwithconstantcoefficients, andinthiscase, wewanttofocusontheright-handsidetobe 0, andwhentheright-handsideisequalto 0, thisiscalled a homogeneoussituation.
Subtitles and vocabulary
Click the word to look it upClick the word to find further inforamtion about it