Andthenitturnsoutsincenowthebeamistravelingfrom a regionwheretheindexofrefractionislargerto a regionwheretheindexofrefractionissmaller, thenthelightwillnowbendawayfromthenormal.
Therewillbe a difference, a distance, andyourjobhereistofindoutwhatthatdistanceis, howfarhasthatbeambeenoffsetbytravelingthrough a 10 centimeterthickslabofglasswithanindexofrefractionof 1.6.
Sohowdoyoudothat?
Wellthefirstthingweneedtodoisfindoutwhatthetasub 2 is.
Andsothereforewe'regoingtouseSnell's Law.
So n1 sineoftheta 1 isequalto n2 sineofthetasub 2.
Andsotohelpuswiththeindexofrefractions, noticethatwe'renowgoingtobeworkingonthisboundaryrighthere, sowe'regoingtocallthis N sub 3, we'regoingtocallthis N sub 4, and N sub 3 isequalto 1.6, and N sub 4 isequalto 1, justsowekeepthingsstraight.
Weknowthatthisverticalsideisstill 10 centimeters, andthisrightherenowbecomestheside Z thatwe'retryingtofindout.
Alright, solet's find Z inthiscase, weknowthatthetangentofthetasub 2 isequaltotheoppositeside, whichis Z, dividedbytheadjacentside, whichis 10 centimeters, or Z isequalto 10 centimeterstimesthetangentofthetasub 2, whichis 18.21 degrees.
So Z isequalto, sowehave 18.21, takethetangentofthat, andmultiplythattimes 10 centimeters, andwehave Z tobe 3.29 centimeters.
Okay, sonowwefound Y, wefound Z, nowwecanfind X, because X issimplygoingtobe Y minus Z, soletmewritethathere, X isequalto Y minus Z, and Y is 5.77 centimeters, and Z is 3.29 centimeters, so 5.77 minus 3.29 equals 2.48 centimeters.
We'realmostthere, sonowwehavethevaluefor X, so X nowis 2.48 centimeters.
Sohowdowefind D?
Wellnowwehavetomakeonemoretriangle.
Letmeuse a slightlydifferentcolorhere, let's usered, so I'm goingtodraw a linestraightacrosslikethis, thelengthofthisredlineisequalto D, weknowthevalueforthisportionrighthere, whichwecalled X, andbyputtingthatlinethere I justkindofdestroyedmy X, sothere's my X.
Soweknowwhat X is, weknowwhat D is, andwhataboutthisanglerighthere?
Andsofindingnowwhat D isequalto, noticethat X isthehypotenuse, D istheadjacentside, sowecouldsaythat D isequaltothehypotenuse X timesthecosineof 30 degrees, because D isadjacenttotheangle.
Andsofinallyplugginginwhat X isequaltorighthere, whichis 2.48 centimeters, so D isequalto 2.48 centimeterstimesthecosineof 30 degrees, andtimes 30 cosineequals, andnowwefoundthat D isequalto 2.15 centimeters, whichiswhatwe'retryingtofindinthefirstplace.
Sonoticethatwasnotaneasyproblem.
Let's recaprealquickwhatwejustdid.
Wehad a lightbeamtravelingthrough a slabthat's 10 centimetersthick.
Ittravelsacrossthefirstboundary, sinceyou'reentering a regionthathas a highindexofrefraction, itrefractstowardsthenormal, acrossthesecondboundary, sinceyou'renowtravelingfrom a highindexofrefractionregionto a lowindexofrefractionregion, itbendsawayfromthenormal, theexitingraywillbeparalleltotheenteringray, butthey'llbeoffsetbysomedistance D.
Youhavetofindoutwhatthatis.
Thenyouhavetofindthedimensionsofthreetriangles, thisone, thebigone, thesmallerone, andthenthisonerighthereinsuccession, tofindwhat D isequalto.