Inthisplaylistwe'regoingtotake a closerlookatsimpleharmonicmotionandinparticularhowtheequationisderivedwhatitmeansphysicallyrelativetowhat's happeningwhenthere's simpleharmonicmotionandthenwe'realsogoingtolookatitintermsofthedampingbecause a lotofsimpleharmonicmotioninvolvesdampingandwewanttoseehowtheequationitselfisderivedandhowtoutilizethatequationaswellandthere's severalsolutionsthatweneedtolookatdependinguponwhatkindofdampingwe'redealingwith.
Butbeforewelookatthedetailsofdampinglet's take a lookagainatthegeneralundampedsimpleharmonicmotionequation.
Soherewegraphicallyshowwhenwehaveanobjecthangingfrom a springthespringhas a certainamountofspringconstant K andtheobjecthas a certainamountofmass M.
Onceweallowittobalancesolet's saywehangitontheattheequilibriumpointthenwecangiveit a pushupwardorwecanpulldownwardandthenit'llbegintooscillateupanddown.
Atthismomentintimethepositioniszerotheaccelerationiszerothenitreachesitsmaximumelongationbelowtheequilibriumpointwhen X equalsnegativetheamplitude.
Sowehavepositiveamplitudenegativeamplitudeatthismomentthevelocityiszerotheaccelerationisupwardandthenitreachesbacktotheequilibriumpointjustlikeitwasoverherewithanupwardvelocity X isequaltozeroandthere's noaccelerationthatmomentbecausethere's nonetforceactingonthemass.
Andsothat's howitiscontinuousupanddownandnoticethatthere's somerelationshipto a sineor a Andthenwemoved a paperpastthatpencilat a constantspeedasthisisoscillatingupanddownyouwouldactuallythepenwouldactuallymakethatsinewaveorthatcosinewaveasthepaperismovingandastheobjectisoscillatingupanddown.
StartingwithNewton's secondlawwhere f equalsmawecanturnthemaequals f andthenweknowthattheforceexertedonthemassbythespringisequaltominuskx. k isthespringconstantand X is a distanceawayfromtheequilibriumpoint.
Noticethenegativesignbecauseifthemassisin a positivepositionthespringisthenpushinginthenegativedirectionthat's whythenegativeisthere.
Thenwerealizethattheaccelerationisessentiallythesecondderivativeofpositionwithrespecttotimesowecanreplace a bythatandthennoticethatifwemovetheminuskxtotheleftweendupwithanequationhereequaltozeroandalsonoticeifwedivideeverythingby m thenwehave d square x dtsquarewithotherwordsthesecondderivativeof x withrespecttotimeplus k over m times x equalszero.
Againthisisanundampedcaseandifwethenreplacethiswith x doubledot. x doubledotsimplymeansthesecondderivativeof x withrespecttotimeandthenifweallowOmegatobeequaltothesquarerootof k over m whichessentiallythat's thedefinitionofOmegawecannowwritethisas x doubledotplusOmegasquared x equalszerowhichisthesecondorderdifferentialequationofanundampedsystem.
Whentimeequalszerothesineofzeroiszeroand x willbeatzerosothat's whatwehaveoverhere.
Howeveriftimeequalszerowhentheobjectisupherethenwehave a cosinefunctionbecausenoticenowwhentimeequalszerothecosineofzeroisoneand x equals a whichiswhatwehaveoverhere.
Nowofcourseitcouldbeoverhereonthewaydownitcouldbeoverhereattimeequalszeroandthenwehavetomodifytheequationbyputting a negativesigninfrontorbyhaving a phaseangleandwe'llshowyouhowtodothatinthelatervideo.
Wellfirstofallwecantakethefirstderivativewithrespecttotimeandthederivativeofthesineisthecosineandthederivativeoftheangleomega t isomegasoendupwith a omegacosineofomega t.
Ifwethentakethesecondderivativethederivativeofcosineisthenegativesignandagainwehavetomultiplytimesthederivativeoftheomegasquaresineofomega t.
Thenrealizingthat a sineomega t, a sineomega t isequalto x wecanreplacethatsowe'releftwithminusomegasquaredtimes x.
Andthenifwemovetotheleftsidethenweendupwith x doubledotplusomegasquared x equalszerowhichisexactlywhatwehadoverthere.
Sothereforeweunderstandthatthisisindeed a solutiontothissecondorderdifferentialequation.
Wecandothesamewiththecosinefunction.
Againtakethefirstderivativewithrespecttotime.
Thederivativeofthecosineisthenegativesine.
Thederivativeofomega t isomega.
Doit a secondtime.
X doubledotaswecallitisequaltoagainthederivativeofsineisthenegativecosine.
That's wherethenegativecamefrom.
Ohno I'm sorry.
Takethatback.
Thederivativeofthesineisthepositivecosine.
Wealreadyhad a negativesine.
Andthenwe'llmultiplythetimesthederivativeofomega t whichisomega.
That's whereomegasquarecomesfrom.
Andcosineofomega t isequalto x.
Wemakethatsubstitution.
Wehave x doubledotequalsminusomegasquared x.
Movetotheleftside.
Nowyoucanseeagainwegettheexactsamesecondorderdifferentialequationshowingthat x equal a cosineofomega t isalso a solutionofthisdifferentialequation.
Andthesquarerootof k over m. m isindeedtheangularspeedortheangularfrequencyofthemotion.
Againwe'llshowyoumoreaboutthat.
Butthat's thebasicconstructofsymplemonicmotionasweusetheequation f equalsmawhichisthenconvertedtothesecondorderdifferentialequationintermsofomegawhichistheangularfrequencyorangularspeedoftheoscillatormotion.
Andthatishowit's done.
WelcometoElectraOnline.
Subtitles and vocabulary
Click the word to look it upClick the word to find further inforamtion about it