Werecommendwatchingitfirstat 1.25x speedandthen a secondtimeat 1.5x speedtounderstanditas a completetechnology.
Sostickaroundandlet's jumprightin.
First, let's startbyclarifyingthedifferencebetween a televisionsatellitedishsuchasthisoneandtheStarlinkgrounddish, whichElonMuskdubbedDishyMcFlatface, orDishyforshort.
TVdishesuse a parabolicreflectortofocustheelectromagneticwaveswhicharetheTVsignalssentfrombroadcastsatellitesorbitingtheEarthatanaltitudeof 35,000 km.
TVsatellitedishesonlyreceiveTVsignalsfromspace.
Theycan't senddata.
Dishy, however, bothsendsandreceivesinternetdatafrom a Starlinksatelliteorbiting 550 kmaway.
WhiletheStarlinksatelliteis 60 timescloserthanTVsatellites, it's stillanincredibledistancetowirelesslysend a signalandthusthebeamsbetweenDishyandtheStarlinksatelliteneedtobefocusedintotight, powerfulbeamsthatarecontinuouslyangledorsteeredtopointatoneanother.
ComparethistoTVbroadcastsignalswhichcomefrom a satellitethesizeof a vanandwhosesignalspropagatein a widefanthatcoverslandmasseslargerthanNorthAmerica.
Table-sizedStarlinksatellites, however, needtobein a lowEarthorbittoprovidefor 20 millisecondlatencies, whichiscriticalforsmoothlyplayinginternetgamesorsurfingtheweb, andas a resulttheircoverageismuchsmaller.
Thus, 10,000 ormoreStarlinksatellites, allorbitingatincrediblyfastspeedsin a lowEarthorbit, arerequiredtoprovidesatelliteinternettotheentireEarth.
Let's nowopenupDishyMcFlatface.
Attheback, wehave a pairofmotorsandanethernetcablethatconnectstotherouter.
OpeningupDishy, wefindanaluminumstructuralbackplateandontheothersidewefind a massiveprintedcircuitboardorPCB.
Onesidehas 640 smallmicrochipsand 20 largermicrochipsorganizedin a patternwithveryintricatetraces, fanningoutfromthelargertosmallermicrochips, alongwithadditionalchipsincludingthemainCPUandGPSmoduleontheedgeofthePCB.
Ontheothersideare 1400-ishcoppercircleswith a gridofsquaresbetweenthecircles.
Onthenextlayer, there's a rubberhoneycombpatternwithsmall, notchedcoppercirclesandbehindthatwefindanotherhoneycombpatternandthenthefrontsideofDishy.
Sowhatarewelookingat?
Well, inessence, wehave 1,280 antennasarrangedin a hexagonalhoneycombpatternwitheachstackofcoppercirclesbeing a singleantennacontrolledbythemicrochipsonthePCB.
Thismassivearrayworkstogetherinwhat's called a phasedarrayinordertosendandreceiveelectromagneticwavesthatareangledtoandfrom a Starlinksatelliteorbiting 550 kilometersabove.
We'llremove a fewofthelayersfornowandstepthroughthebasicprinciplesofhowwegenerateanelectromagneticwavethatpropagatesoutfromthisantenna.
Tostart, atthebottomwehave a microstriptransmissionlinefeedcomingfromoneofthesmallmicrochips.
Thistransmissionlinefeedisjust a copperPCBtrace, orwire, thatabruptlyendsundertheantennastack.
Wesend a 12 gigahertzhigh-frequencyvoltage, orsignal, tothefeedwire, whichis a voltagethatgoesupanddownin a sinusoidalfashion, goingfrompositivetonegativeandbacktopositiveonceevery 83 picoseconds, 12 billiontimes a second, or 12 gigahertz.
Notethathigh-frequencyelectricityworksdifferentlyfromdirectcurrentorlow-frequency 50 or 60 hertzhouseholdelectricity.
Forexample, abovethecopperfeedwirewehave a coppercirclewithnotchescutintoitcalledanantennapatch.
WithDC, orlow-frequencyalternatingcurrent, therewouldn't bemuchhappeningbecausethepatchisisolated, butwith a high-frequencysignal, thepowersenttothefeedwireiscoupledorsenttothepatch.
Howexactlydoesthishappen?
Well, asmentionedearlier, a 12 gigahertzsignalisappliedtothecopperfeedwire.
Whenthevoltageisatthebottomofitssinusoidal, ortrough, wehave a concentrationofelectronspushedtotheendofthefeedwire, thuscreating a zoneofnegativechargewhichcorrespondstothemaximumnegativevoltage.
Thisconcentrationofelectronsonthetipofthewirerepelsallelectronsaway, includingtheelectronsonthetopofthepatch, andas a result, theseelectronsarepushedtotheothersideofthecircularpatch.
However, whenwereversethevoltagetothecopperfeedwire 42 picosecondslater, wehave a concentrationofpositivecharges, or a lackofelectronsattheendofthewire, andthustheelectronsinthepatchflowtotheotherside.
However, otherelectricfieldsarehorizontalinthesameplaneofthepatch, andarecalledfringingfields.
Thesefringingfieldsareinthesamedirection, andthustheyaddtoeachother, resultingin a combinedelectricfieldpointinginthisdirection.
Atthesametime, electronsflowingfromonesideofthedisktotheother, whichisanelectriccurrent, generate a magneticfieldwith a strengthanddirection, orvector, perpendiculartothefringingelectricfieldvector.
As a result, wehaveanelectricfieldpointingoneway, and a magneticfieldpointingperpendiculartothat.
Wecannowseethatthezonewheretheyaddtogetherconstructivelyisfartighter, ormorefocused, than a singleantennaalone.
Whenweaddevenmoreantennas, thezoneofconstructiveinterferencebecomesevenmorefocusedinwhatiscalled a beamfront.
Thus, byadding 1280 antennastogether, wecanform a beamwithsomuchintensityanddirectionalitythatitcanreachouterspace.
Nowyoumightbethinkingthatthestrengthofoneantennaduplicated 1280 timesoverwouldresultin a combinedpowerof, well, 1280 times a singleantenna.
Butyou'd bemistaken.
Theeffectivepowerandrangeofthemainbeamfromalltheseantennascombinedisactuallycloserto 3500 timesthatof a singleantenna.
Thequickexplanationisthatbyhavingthesepatternsofconstructiveanddestructiveinterference, it's asifwetook a singleantenna, multiplieditby 1280, andthenplaced a wholebunchofmirrorsaroundit, andleftonly a singleholeforthemainbeamtoexitthrough.
Thelongexplanationrequires a tonofmathandphysics, solet's moveon.
Brilliantisnothinglike a boringtextbook, butratherallthecoursesuseinteractivemodulestomakethelessonsentertainingandtohelptheconceptsstickinyourhead.
Toreallyunderstandtoday's frontiertechnologies, andtohelpyoubecome a revolutionaryengineerandentrepreneurlikeElonMusk, youhavetobeversedin a widerangeoffieldsinscienceandengineering.
Nowlet's continueexploringhow a powerfulbeamcanbecontinuouslysweptacrosstheskyandthenhowwefillitwithhundredsofmegabitsofdataeverysecond.
As a quickrefresherfrombefore, here's anarrayof 1280 antennasandwefedthemallwiththesame 12 GHzsignalinordertocreate a laser-likebeampropagatingperpendiculartoDishi.
However, asmentionedearlier, weneedtobeabletoanglethisbeamsothatitpointsdirectlyattheStarlinksatellitezoomingacrosstheskyat 27,000 kmperhour.
Usingthemotorsisn't feasiblebecausetheywouldbreakwithin a monthandaren't accurateenough.
Thesolutionistophaseshiftthesignalsenttooneantennawithrespecttotheotherantennaand, as a result, thetimingofthepeaksandtroughsemittedfromoneantennaisdifferentfromtheother.
Well, DISHIandthesatelliteindeedsend a signalthatlookslikethis.
However, theyvarytheamplitudeandthephaseofthetransmittedsignalandthenassignorencode 6-bitbinaryvaluestoeachdifferentcombinationorpermutationofamplitudeandphase.
With 6 bits, thereare 64 differentvalues, andthusweneed 64 differentpermutationsofamplitudeandphase.
However, insteadoflistingallthepermutations, it's moreeasilyvisualizedbyarrangingthe 64 differentvaluesin a graph, called a constellationdiagram, asshown.
Let's lookatthepoint 011101 anddraw a linefromtheorigintothispoint.
Lotsoftimesyouseethesignalscruncheduplikethis, however, becausethefrequencyofthesignalisjustonceevery 83 picoseconds, or 12 gigahertz.
Andsince a symbollasts 10 nanoseconds, it's moreaccuratetohavearound 120 wavelengthspersymbolbeforethenextsymbolissent.
Becausewe'redealingontheorderofpicoandnanoseconds, thatmeansthatwecanfit 90 million 6-bitgroupsorsymbols, resultingin 540 millionbitspersecond.
However, notethatthisdatatransferissharedbetweendownloadandupload.
Sincethisparticularantennacan't transmitandreceivedataatthesametime, about 74 millisecondsofeverysecondisusedtosenddatafromDISHItotheStarlinksatellite, and 926 millisecondsisusedtosenddatafromthesatellitedowntoDISHI.
Andforthesakeofreducinglatency, thesetimeslotsgetdistributedthroughout a singlesecondinsteadofgroupingthemalltogether.