Placeholder Image

Subtitles section Play video

  • We live in a three-dimensional world

    我們住在一個三維世界

  • where everything has length,

    一切事物都有長度、

  • width,

    寬度、

  • and height.

    和高度

  • But what if our world were two-dimensional?

    但如果我們的世界是二維的會怎麼樣呢?

  • We would be squashed down

    我們會被壓扁

  • to occupy a single plane of existence,

    於一個存在的單一平面上

  • geometrically speaking, of course.

    以幾何學來講,理所當然

  • And what would that world look and feel like?

    那個世界看起來及感覺起來像怎麼樣呢?

  • This is the premise

    這是一個假設

  • of Edwin Abbott's 1884 novella, Flatland.

    由愛德溫‧艾勃特在1884年的 短篇小說《 平面國》中提出

  • Flatland is a fun, mathematical thought experiment

    平面國是一個有趣的數學思維實驗

  • that follows the trials and tribulations of a square

    敘述一個正方形遇到的種種考驗與磨練

  • exposed to the third dimension.

    在歷經第三維度的時候

  • But what is a dimension, anyway?

    但什麼是維度呢?

  • For our purposes, a dimension is a direction,

    從我們的角度出發,一維是指一個方向

  • which we can picture as a line.

    我們可以想成一條線

  • For our direction to be a dimension,

    把我們的方向當作是一維

  • it has to be at right angles to all other dimensions.

    它必須與所有其他的維度都形成直角

  • So, a one-dimensional space is just a line.

    所以,一維空間就是一條線

  • A two-dimensional space is defined

    二維空間

  • by two perpendicular lines,

    由兩條相互垂直的直線所定義

  • which describe a flat plane

    它們建構了一個平面

  • like a piece of paper.

    就像一張紙一樣

  • And a three-dimensional space

    三維空間

  • adds a third perpendicular line,

    增加第三條垂直線

  • which gives us height

    它提供我們高度

  • and the world we're familiar with.

    及那個我們熟悉的世界

  • So, what about four dimensions?

    那四維呢?

  • And five?

    五維?

  • And eleven?

    甚至十一維?

  • Where do we put these new perpendicular lines?

    我們要將這些新的垂直線放在哪呢?

  • This is where Flatland can help us.

    這就是平面國可以幫助我們的地方

  • Let's look at our square protagonist's world.

    讓我們來看一下正方形主角的世界

  • Flatland is populated by geometric shapes,

    平面國居住著各種幾何圖形

  • ranging from isosceles trianges

    從等腰三角形、

  • to equilateral triangles

    等邊三角形、

  • to squares,

    正方形、

  • pentagons,

    五角形、

  • hexagons,

    六角形、

  • all the way up to circles.

    一直到圓形

  • These shapes are all scurrying around a flat world,

    這些圖形都在一個 平面的世界上到處跑來跑去

  • living their flat lives.

    過著它們平面的生活

  • They have a single eye on the front of their faces,

    在它們臉的前方有一隻眼睛

  • and let's see what the world looks like

    讓我們來看看從它們的角度上 這個世界看起來像甚麼樣

  • from their perspective.

    實質上它們看到的是一維

  • What they see is essentially one dimension,

    也就是一條線

  • a line.

    但在艾勃特的平面國中

  • But in Abbott's Flatland,

    越接近的物體看起來越明亮

  • closer objects are brighter,

    這就是它們如何看到深度

  • and that's how they see depth.

    所以三角形看起來與正方形不同、

  • So a triangle looks different from a square,

    看起來與圓形不同

  • looks different a circle,

    諸如此類

  • and so on.

    它們的腦袋無法理解第三維度

  • Their brains cannot comprehend the third dimension.

    事實上,它們極力否認第三維度的存在

  • In fact, they vehemently deny its existence

    因為那根本完全不存在於它們的世界

  • because it's simply not part of their world

    或經驗中

  • or experience.

    但事實證明,它們所需要的

  • But all they need,

    只是一點小小的刺激

  • as it turns out,

    有一天,一個球體出現在平面國中

  • is a little boost.

    拜訪我們的正方形英雄

  • One day a sphere shows up in Flatland

    這是當球體經過平面國時看起來的樣子

  • to visit our square hero.

    從正方形的角度來看

  • Here's what it looks like

    這完全顛覆了它小小正方形的思想

  • when the sphere passes through Flatland

    之後球體將正方形提升

  • from the square's perspective,

    進入第三維

  • and this blows his little square mind.

    也就是高度方向 一個平面國國民以前從未到過的地方

  • Then the sphere lifts the square

    向正方形展示了它的世界

  • into the third dimension,

    從這個高度,正方形可以看到所有事物

  • the height direction where no Flatlander has gone before

    建築物的形狀、

  • and shows him his world.

    所有隱藏在世界中珍貴的寶物、

  • From up here, the square can see everything:

    甚至於它朋友的內部

  • the shapes of buildings,

    這可能有點尷尬

  • all the precious gems hidden in the Earth,

    不幸的正方形一接受第三維度後

  • and even the insides of his friends,

    就乞求球體幫助它

  • which is probably pretty awkward.

    探索第四或更高的維度

  • Once the hapless square

    但球體感到非常生氣

  • comes to terms with the third dimension,

    對於超過三維的看法

  • he begs his host to help him

    並把正方形逐回平面國

  • visit the fourth and higher dimensions,

    球體的憤怒是可以理解的

  • but the sphere bristles at the mere suggestion

    第四維度很難

  • of dimensions higher than three

    和我們在這世界的經歷達成一致

  • and exiles the square back to Flatland.

    沒有被來訪的超立方體提升到第四維度

  • Now, the sphere's indignation is understandable.

    我們無法體會

  • A fourth dimension is very difficult

    但我們可以接近

  • to reconcile with our experience of the world.

    你回溯到當球體

  • Short of being lifted into the fourth dimension

    第一次到訪第二維時

  • by visiting hypercube,

    它看起來像一連串的圓圈

  • we can't experience it,

    當它碰觸到平面國時起始於一個點

  • but we can get close.

    越變越大直到它穿越一半時

  • You'll recall that when the sphere

    然後又萎縮變小

  • first visited the second dimension,

    我們可以視此次拜訪

  • he looked like a series of circles

    為三維物體的一連串橫截面

  • that started as a point

    我們可以同樣對待

  • when he touched Flatland,

    在第三維度的四維物體

  • grew bigger until he was halfway through,

    我們說超球體

  • and then shrank smaller again.

    是一個四維物體,等同於三維的球體

  • We can think of this visit

    當這四維物體經過第三維度

  • as a series of 2D cross-sections of a 3D object.

    它會看起來像這樣

  • Well, we can do the same thing

    我們來看看另一個表現四維物體的方式

  • in the third dimension with a four-dimensional object.

    我們有一個點,一個零維圖形

  • Let's say that a hypersphere

    現在我們把它延伸一吋

  • is the 4D equivalent of a 3D sphere.

    於是我們有了一個一維線段

  • When the 4D object passes through the third dimension,

    把整個線段向外延伸一吋

  • it'll look something like this.

    於是我們得到一個二維正方形

  • Let's look at one more way

    把整個二維正方形向外延伸一吋

  • of representing a four-dimensional object.

    於是我們得到一個三維立方體

  • Let's say we have a point,

    你可以看見我們做了什麼

  • a zero-dimensional shape.

    把整個立方體向外延伸一吋

  • Now we extend it out one inch

    這一次與所有存在的三個維度相互垂直

  • and we have a one-dimensional line segment.

    然後我們得到一個超立方體

  • Extend the whole line segment by an inch,

    也叫四維超正方體

  • and we get a 2D square.

    我們都知道

  • Take the whole square and extend it out one inch,

    可能有四維生物存在於某個地方

  • and we get a 3D cube.

    偶爾探頭到我們繁忙的三維世界

  • You can see where we're going with this.

    看看有什麼大驚小怪的事情

  • Take the whole cube

    事實上,可能有其他的四維世界

  • and extend it out one inch,

    超越我們所能察覺的範圍

  • this time perpendicular to all three existing directions,

    因為我們感知的特性 導致我們永遠看不到

  • and we get a 4D hypercube,

    那不會顛覆你小小的腦袋嗎?

  • also called a tesseract.

  • For all we know,

  • there could be four-dimensional lifeforms

  • somewhere out there,

  • occasionally poking their heads

  • into our bustling 3D world

  • and wondering what all the fuss is about.

  • In fact, there could be whole

  • other four-dimensional worlds

  • beyond our detection,

  • hidden from us forever

  • by the nature of our perception.

  • Doesn't that blow your little spherical mind?

We live in a three-dimensional world

我們住在一個三維世界

Subtitles and vocabulary

Click the word to look it up Click the word to find further inforamtion about it

B1 TED-Ed 正方形 維度 球體 物體 世界

TED-Ed】探索其他維度--亞歷克斯-羅森塔爾和喬治-扎伊丹。 (【TED-Ed】Exploring other dimensions - Alex Rosenthal and George Zaidan)

  • 602 50
    稲葉白兎 posted on 2021/01/14
Video vocabulary