Placeholder Image

Subtitles section Play video

  • I work with a bunch of mathematicians, philosophers and computer scientists,

    我和一群數學家、 哲學家、及電腦科學家一起工作。

  • and we sit around and think about the future of machine intelligence,

    我們坐在一起思考機器智慧的未來。

  • among other things.

    以及其他問題。

  • Some people think that some of these things are sort of science fiction-y,

    有些人可能認為這是科幻小說的範疇,

  • far out there, crazy.

    離我們很遙遠,很瘋狂。

  • But I like to say,

    但是我要說,

  • okay, let's look at the modern human condition.

    好,我們來看看現代人類的狀況....

  • (Laughter)

    (觀眾笑聲)

  • This is the normal way for things to be.

    這是人類的常態。

  • But if we think about it,

    但如果我們仔細想想,

  • we are actually recently arrived guests on this planet,

    其實人類是剛剛才抵達地球的訪客

  • the human species.

    假設地球在一年前誕生,

  • Think about if Earth was created one year ago,

    人類這個物種則僅存在了10分鐘。

  • the human species, then, would be 10 minutes old.

    工業革命在2秒鐘前開始。

  • The industrial era started two seconds ago.

    另外一個角度是看看這一萬年來的GDP增長

  • Another way to look at this is to think of world GDP over the last 10,000 years,

    我花了時間作了張圖表,

  • I've actually taken the trouble to plot this for you in a graph.

    它長這個樣子

  • It looks like this.

    (觀眾笑聲)

  • (Laughter)

    對一個正常的狀態來說這是個很有趣的形狀。

  • It's a curious shape for a normal condition.

    我可不想要坐在上面。

  • I sure wouldn't want to sit on it.

    (觀眾笑聲)

  • (Laughter)

    我們不禁問自己:「是什麼造成了這種異態呢?」

  • Let's ask ourselves, what is the cause of this current anomaly?

    有些人會說是科技

  • Some people would say it's technology.

    這是對的,科技在人類歷史上不斷累積,

  • Now it's true, technology has accumulated through human history,

    而現在科技正以飛快的速度進步。

  • and right now, technology advances extremely rapidly --

    這個是近因,

  • that is the proximate cause,

    這也是為什麼我們現在的生產力很高。

  • that's why we are currently so very productive.

    但是我想要進一步回想到最終的原因

  • But I like to think back further to the ultimate cause.

    看看這兩位非常傑出的紳士:

  • Look at these two highly distinguished gentlemen:

    這位是坎茲先生

  • We have Kanzi --

    他掌握了200個詞彙,這是一個難以置信的壯舉。

  • he's mastered 200 lexical tokens, an incredible feat.

    以及 愛德 維騰,他掀起了第二次超弦革命。

  • And Ed Witten unleashed the second superstring revolution.

    如果我們往腦袋瓜裡面看,這是我們看到的:

  • If we look under the hood, this is what we find:

    基本上是一樣的東西。

  • basically the same thing.

    一個稍微大一點,

  • One is a little larger,

    它可能有一些特別的連結方法。

  • it maybe also has a few tricks in the exact way it's wired.

    但是這些無形的差異不會太複雜,

  • These invisible differences cannot be too complicated, however,

    因為從我們共同的祖先以來,

  • because there have only been 250,000 generations

    只經過了25萬代。

  • since our last common ancestor.

    我們知道複雜的機制需要很長的時間演化。

  • We know that complicated mechanisms take a long time to evolve.

    因此 一些相對微小的變化

  • So a bunch of relatively minor changes

    將我們從坎茲先生變成了維騰,

  • take us from Kanzi to Witten,

    從撿起掉落的樹枝當武器到發射洲際彈道飛彈

  • from broken-off tree branches to intercontinental ballistic missiles.

    因此,顯而易見的是至今我們所實現的所有事

  • So this then seems pretty obvious that everything we've achieved,

    以及我們關心的所有事物,

  • and everything we care about,

    都取決於人腦中相對微小的改變。

  • depends crucially on some relatively minor changes that made the human mind.

    由此而來的推論就是:在未來,

  • And the corollary, of course, is that any further changes

    任何能顯著地改變思想基體的變化

  • that could significantly change the substrate of thinking

    都有可能會帶來巨大的後果。

  • could have potentially enormous consequences.

    我的一些同事覺得我們即將發現

  • Some of my colleagues think we're on the verge

    足以深刻的改變思想基體的科技

  • of something that could cause a profound change in that substrate,

    那就是超級機器智慧

  • and that is machine superintelligence.

    以前的人工智慧是將指令輸入到一個箱子裡。

  • Artificial intelligence used to be about putting commands in a box.

    你需要程式設計師

  • You would have human programmers

    精心的將知識設計成指令。

  • that would painstakingly handcraft knowledge items.

    你建立這些專門系統,

  • You build up these expert systems,

    這些系統在某些特定的領域中有點用,

  • and they were kind of useful for some purposes,

    但是它們很生硬,你無法延展這些系統。

  • but they were very brittle, you couldn't scale them.

    基本上這些系統所輸出的東西僅限於你事先輸入的範圍。

  • Basically, you got out only what you put in.

    但是從那時起,

  • But since then,

    人工智慧的領域裡發生了模式的轉變。

  • a paradigm shift has taken place in the field of artificial intelligence.

    現在主要的課題是機器的學習。

  • Today, the action is really around machine learning.

    因此,與其設計知識的表現及特點,

  • So rather than handcrafting knowledge representations and features,

    我們寫出具有學習原始感官數據的能力的程式碼。

  • we create algorithms that learn, often from raw perceptual data.

    基本上和嬰兒所做的是一樣的。

  • Basically the same thing that the human infant does.

    結果就是不侷限於某個領域的人工智慧 --

  • The result is A.I. that is not limited to one domain --

    同一個系統可以學習在任何兩種語言之間翻譯

  • the same system can learn to translate between any pairs of languages,

    或者學著玩雅達利系統上的任何一款遊戲。

  • or learn to play any computer game on the Atari console.

    現在當然

  • Now of course,

    人工智慧到現在還未能達到像人類一樣

  • A.I. is still nowhere near having the same powerful, cross-domain

    具有強大的跨領域的學習能力。

  • ability to learn and plan as a human being has.

    人類大腦還具有一些運算技巧

  • The cortex still has some algorithmic tricks

    我們不知道如何將這些技巧複製到機器中。

  • that we don't yet know how to match in machines.

    所以現在需要問的是:

  • So the question is,

    我們還要多久才能在機器裡面複製這些技巧?

  • how far are we from being able to match those tricks?

    在幾年前,

  • A couple of years ago,

    我們對世界頂尖的人工智慧專家做了一次問卷調查,

  • we did a survey of some of the world's leading A.I. experts,

    想要看看他們的想法, 其中的一個題目是:

  • to see what they think, and one of the questions we asked was,

    "到哪一年你覺得人類會有50%的機率

  • "By which year do you think there is a 50 percent probability

    能夠達成人類級的人工智慧?"

  • that we will have achieved human-level machine intelligence?"

    我們把人類級的人工智慧定義為有能力

  • We defined human-level here as the ability to perform

    將任何任務至少執行得像一名成年人一樣好,

  • almost any job at least as well as an adult human,

    所以是真正的人類級別,而不是僅限於某些領域。

  • so real human-level, not just within some limited domain.

    而答案的中位數是2040或2050年

  • And the median answer was 2040 or 2050,

    取決於我們問的專家屬於什麼群體。

  • depending on precisely which group of experts we asked.

    當然,這個有可能過很久才實現,也有可能提早實現

  • Now, it could happen much, much later, or sooner,

    沒有人知道確切的時間。

  • the truth is nobody really knows.

    我們知道的是,機器基體處理資訊能力的最終界限

  • What we do know is that the ultimate limit to information processing

    比生物組織的界限要大的多。

  • in a machine substrate lies far outside the limits in biological tissue.

    這取決於物理原理。

  • This comes down to physics.

    一個生物神經元發出脈衝的頻率可能在200赫茲,每秒200次。

  • A biological neuron fires, maybe, at 200 hertz, 200 times a second.

    但就算是現在的電晶體都以千兆赫(GHz)的頻率運轉。

  • But even a present-day transistor operates at the Gigahertz.

    神經元在軸突中傳輸的速度比較慢,頂多是每秒100公尺。

  • Neurons propagate slowly in axons, 100 meters per second, tops.

    但在電腦裡面,信號是以光速傳播的。

  • But in computers, signals can travel at the speed of light.

    另外還有尺寸的限制

  • There are also size limitations,

    就像人類的大腦必需要放得進顱骨內。

  • like a human brain has to fit inside a cranium,

    但是一部電腦可以跟倉庫一樣大,甚至更大。

  • but a computer can be the size of a warehouse or larger.

    因此超級智慧的潛能現在正潛伏在物質裡面,

  • So the potential for superintelligence lies dormant in matter,

    就像是原子能在人類的歷史中一直潛伏著,

  • much like the power of the atom lay dormant throughout human history,

    耐心的等著,一直到1945年。

  • patiently waiting there until 1945.

    在這個世紀內,

  • In this century,

    科學家有可能會將人工智慧的力量喚醒。

  • scientists may learn to awaken the power of artificial intelligence.

    屆時我覺得我們會見證到智慧的大爆發。

  • And I think we might then see an intelligence explosion.

    大部分的人,當他們在想什麼是聰明什麼是愚笨的時候,

  • Now most people, when they think about what is smart and what is dumb,

    我想他們腦中浮現出的畫面會是這樣的:

  • I think have in mind a picture roughly like this.

    在一邊是村裡的傻子,

  • So at one end we have the village idiot,

    然後在另外一邊

  • and then far over at the other side

    是 愛德 維騰 或愛因斯坦,或你喜歡的某位大師。

  • we have Ed Witten, or Albert Einstein, or whoever your favorite guru is.

    但是我覺得從人工智慧的觀點來看,

  • But I think that from the point of view of artificial intelligence,

    真正的畫面應該比較像這樣子:

  • the true picture is actually probably more like this:

    人工智慧從這一點開始,零智慧

  • AI starts out at this point here, at zero intelligence,

    然後,在許多許多年辛苦的研究以後,

  • and then, after many, many years of really hard work,

    我們可能可以達到老鼠級的人工智慧,

  • maybe eventually we get to mouse-level artificial intelligence,

    它可以在凌亂的環境中找到路

  • something that can navigate cluttered environments

    就像一隻老鼠一樣。

  • as well as a mouse can.

    然後,在更多年的辛苦研究及投資了很多資源之後,

  • And then, after many, many more years of really hard work, lots of investment,

    我們可能可以達到黑猩猩級的人工智慧。

  • maybe eventually we get to chimpanzee-level artificial intelligence.

    然後,在更加多年的辛苦研究之後,

  • And then, after even more years of really, really hard work,

    我們達到村莊傻子級別的人工智慧。

  • we get to village idiot artificial intelligence.

    然後過一小會兒後,我們就超越了愛德維騰。

  • And a few moments later, we are beyond Ed Witten.

    這列火車並不會在人類村這一站就停車。

  • The train doesn't stop at Humanville Station.

    它比較可能會直接呼嘯而過。

  • It's likely, rather, to swoosh right by.

    這個具有深遠的寓意,

  • Now this has profound implications,

    特別是在談到權力的問題。

  • particularly when it comes to questions of power.

    舉例來說,黑猩猩很強壯 --

  • For example, chimpanzees are strong --

    以體重比例來說, 一隻黑猩猩比一個健康的男性人類要強壯兩倍。

  • pound for pound, a chimpanzee is about twice as strong as a fit human male.

    然而,坎茲和他朋友們的命運則很大的部分取決於

  • And yet, the fate of Kanzi and his pals depends a lot more

    人類的作為,而非黑猩猩們自己的作為。

  • on what we humans do than on what the chimpanzees do themselves.

    當超級智慧出現後,

  • Once there is superintelligence,

    人類的命運可能會取決於超級智慧的作為。

  • the fate of humanity may depend on what the superintelligence does.

    想想看:

  • Think about it:

    機器智慧將會是人類所需要作出的最後一個發明。

  • Machine intelligence is the last invention that humanity will ever need to make.

    從那之後機器將會比人類更會發明,

  • Machines will then be better at inventing than we are,

    他們也將會在"數位時間"裡做出這些事。

  • and they'll be doing so on digital timescales.

    這意味著未來到來的時間將被縮短。

  • What this means is basically a telescoping of the future.

    想想那些我們曾經想像過的瘋狂科技

  • Think of all the crazy technologies that you could have imagined

    人類可能在有足夠的時間下可以發明出來:

  • maybe humans could have developed in the fullness of time:

    防止衰老、殖民太空、

  • cures for aging, space colonization,

    自行複製的奈米機器人,或將我們的頭腦上載到電腦裡,

  • self-replicating nanobots or uploading of minds into computers,

    這一些僅存在科幻小說範疇,

  • all kinds of science fiction-y stuff

    但同時還是符合物理法則的東西

  • that's nevertheless consistent with the laws of physics.

    超級智慧有辦法開發出這些東西,而且速度可能很快。

  • All of this superintelligence could develop, and possibly quite rapidly.

    這麼成熟的超級智慧

  • Now, a superintelligence with such technological maturity

    將會非常的強大,

  • would be extremely powerful,

    最少在某些場景它將有辦法得到它想要的東西。

  • and at least in some scenarios, it would be able to get what it wants.

    這樣以來我們的未來就將會被這個超級智慧的偏好所影響。

  • We would then have a future that would be shaped by the preferences of this A.I.

    現在出現了一個好問題,這些偏好是什麼呢?

  • Now a good question is, what are those preferences?

    這個問題更棘手。

  • Here it gets trickier.

    要在這個領域往前走,

  • To make any headway with this,

    我們必須避免將機器智慧擬人化(人格化)。

  • we must first of all avoid anthropomorphizing.

    這一點很諷刺因為每一篇關於未來的人工智慧

  • And this is ironic because every newspaper article

    的報導都會有這張照片:

  • about the future of A.I. has a picture of this:

    所以我覺得我們必須要更抽象的來想像這個議題,

  • So I think what we need to do is to conceive of the issue more abstractly,

    而非以好萊塢的鮮明場景來想像。

  • not in terms of vivid Hollywood scenarios.

    我們需要把智慧看做是一個優化的過程,

  • We need to think of intelligence as an optimization process,

    一個將未來指引到特定的組態的過程。

  • a process that steers the future into a particular set of configurations.

    一個超級智慧是一個很強大的優化過程。

  • A superintelligence is a really strong optimization process.

    它將很會利用現有資源

  • It's extremely good at using available means to achieve a state

    去達到達成目標的狀態。

  • in which its goal is realized.

    這意味著有著高智慧以及

  • This means that there is no necessary conenction between

    擁有一個對人類來說是有意義的目標之間

  • being highly intelligent in this sense,

    並沒有必然的聯繫。

  • and having an objective that we humans would find worthwhile or meaningful.

    假設我們給予人工智慧的目標是讓人類笑。

  • Suppose we give an A.I. the goal to make humans smile.

    當人工智慧比較弱時,它會做出有用的或是好笑的動作

  • When the A.I. is weak, it performs useful or amusing actions

    以讓使用者笑出來。

  • that cause its user to smile.

    當人工智慧演化成超級智慧的時後,

  • When the A.I. becomes superintelligent,

    它會體認到有更有效的方法可以達到這個目標:

  • it realizes that there is a more effective way to achieve this goal:

    控制這個世界

  • take control of the world

    然後在人類的臉部肌肉上連接電級

  • and stick electrodes into the facial muscles of humans

    以使這個人不斷的微笑。

  • to cause constant, beaming grins.

    另外一個例子,

  • Another example,

    假設我們給人工智慧的目標是解出一個非常困難的數學問題。

  • suppose we give A.I. the goal to solve a difficult mathematical problem.

    當人工智慧變成超級智慧時,

  • When the A.I. becomes superintelligent,

    它會體認到最有效的方法是

  • it realizes that the most effective way to get the solution to this problem

    把整個地球轉化成一部超大號的電腦,

  • is by transforming the planet into a giant computer,

    進而增加它自己的運算能力。

  • so as to increase its thinking capacity.

    注意到這個模式會給人工智慧理由去做

  • And notice that this gives the A.I.s an instrumental reason

    我們可能不認可的事情。

  • to do things to us that we might not approve of.

    在這個模型裡面人類是威脅,

  • Human beings in this model are threats,

    我們可能會在解開數學問題的過程中成為阻礙。

  • we could prevent the mathematical problem from being solved.

    當然,在我們可預見的範圍內,事情不會以這種方式出錯;

  • Of course, perceivably things won't go wrong in these particular ways;

    這些是誇大的例子。

  • these are cartoon examples.

    但是它指出的概念很重要:

  • But the general point here is important:

    如果你創造了一個非常強大的優化流程

  • if you create a really powerful optimization process

    要最大化目標X,

  • to maximize for objective x,

    你最好確保你對目標X的定義

  • you better make sure that your definition of x

    包含了所有你所在意的事情。

  • incorporates everything you care about.

    這也是在很多神話故事中教導的寓意。

  • This is a lesson that's also taught in many a myth.

    希臘神話中的米達斯國王希望他碰到的所有東西都可以變成金子。

  • King Midas wishes that everything he touches be turned into gold.

    他碰到了他的女兒, 她變成了黃金。

  • He touches his daughter, she turns into gold.

    他碰到了他的食物,他的食物也變成了黃金。

  • He touches his food, it turns into gold.

    這實際上跟我們的題目有關,

  • This could become practically relevant,

    不僅僅是對貪婪的隱喻,

  • not just as a metaphor for greed,

    但也指出了如果你創造了一個強大的優化流程

  • but as an illustration of what happens

    但同時給了它不正確或不精確的目標後

  • if you create a powerful optimization process

    會發生什麼事。

  • and give it misconceived or poorly specified goals.

    你可能會說,如果電腦系統開始在人臉上安裝電極,

  • Now you might say, if a computer starts sticking electrodes into people's faces,

    我們可以直接把他關掉就好了。

  • we'd just shut it off.

    一、這並不一定容易做到,如果我們已經對這個系統產生依賴性 ——

  • A, this is not necessarily so easy to do if we've grown dependent on the system --

    比如:你知道網際網路的開關在哪裡嗎?

  • like, where is the off switch to the Internet?

    二、為什麼黑猩猩當初沒有把人類的開關關掉?

  • B, why haven't the chimpanzees flicked the off switch to humanity,

    或是尼安德特人?

  • or the Neanderthals?

    他們有很明顯的理由要這麼做,

  • They certainly had reasons.

    而我們的開關就在這裡:

  • We have an off switch, for example, right here.

    (窒息聲)

  • (Choking)

    原因是人類是很聰明的敵人;

  • The reason is that we are an intelligent adversary;

    我們可以預見威脅並為其做出準備。

  • we can anticipate threats and plan around them.

    但一個超級智慧也會,

  • But so could a superintelligent agent,

    而且它的能力將比我們強大的多。

  • and it would be much better at that than we are.

    我想要說的一點是,我們不應該覺得一切都在我們的掌握之中。

  • The point is, we should not be confident that we have this under control here.

    我們可能可以藉由把AI放到一個盒子裡面

  • And we could try to make our job a little bit easier by, say,

    來給我們更多的掌握,

  • putting the A.I. in a box,

    就像是一個獨立的軟體環境,

  • like a secure software environment,

    一個AI無法逃脫的虛擬實境。

  • a virtual reality simulation from which it cannot escape.

    但是我們有多大的信心這個AI不會找到漏洞?

  • But how confident can we be that the A.I. couldn't find a bug.

    就算只是人類駭客,他們還經常找出漏洞。

  • Given that merely human hackers find bugs all the time,

    我想我們不是很有信心。

  • I'd say, probably not very confident.

    那所以我們把網路線拔掉,製造一個物理間隙,

  • So we disconnect the ethernet cable to create an air gap,

    但同樣的,就算只是人類駭客

  • but again, like merely human hackers

    也經常可以利用社交工程陷阱來突破物理間隙。

  • routinely transgress air gaps using social engineering.

    現在,在我在台上說話的同時

  • Right now, as I speak,

    我確定在世界的某一個角落裡有一名公司職員

  • I'm sure there is some employee out there somewhere

    才剛剛被自稱來自IT部門的人士說服(詐騙)

  • who has been talked into handing out her account details

    並交出了她的帳戶信息。

  • by somebody claiming to be from the I.T. department.

    更天馬行空的狀況也可能會發生,

  • More creative scenarios are also possible,

    就像是如果你是AI,

  • like if you're the A.I.,

    你可以想像藉由擺動你體內的電路

  • you can imagine wiggling electrodes around in your internal circuitry

    然後創造出無線電波,用以與外界溝通。

  • to create radio waves that you can use to communicate.

    或這你可以假裝有故障,

  • Or maybe you could pretend to malfunction,

    然後當程式設計師把你打開檢查哪裡出錯時,

  • and then when the programmers open you up to see what went wrong with you,

    他們找出了原始碼 --梆--

  • they look at the source code -- Bam! --

    你可以在此做出操控。

  • the manipulation can take place.

    或這它可以做出一個很巧妙的科技藍圖,

  • Or it could output the blueprint to a really nifty technology,

    當我們實施這個藍圖後,

  • and when we implement it,

    它會產生一些AI計劃好的秘密副作用。

  • it has some surreptitious side effect that the A.I. had planned.

    寓意是我們不能對我們控制人工智慧的能力

  • The point here is that we should not be confident in our ability

    具有太大的信心

  • to keep a superintelligent genie locked up in its bottle forever.

    它終究會逃脫出來,只是時間問題而已。

  • Sooner or later, it will out.

    我覺得解方是我們需要弄清楚

  • I believe that the answer here is to figure out

    如何創造出一個超級智慧, 哪怕是它逃出來了,

  • how to create superintelligent A.I. such that even if -- when -- it escapes,

    它還是安全的,因為它是站在我們這一邊的

  • it is still safe because it is fundamentally on our side

    因為它擁有了我們的價值觀。

  • because it shares our values.

    我們沒有辦法避免這個艱難的問題。

  • I see no way around this difficult problem.

    但是我覺得我們可以解決這個問題。

  • Now, I'm actually fairly optimistic that this problem can be solved.

    我們並不需要把我們在乎的所有事物寫下來,

  • We wouldn't have to write down a long list of everything we care about,

    或更麻煩的把這些事物寫成電腦程式語言

  • or worse yet, spell it out in some computer language

    像是 C++或 Python,

  • like C++ or Python,

    這是個不可能完成的任務。

  • that would be a task beyond hopeless.

    與其,我們可以創造出一個人工智慧,它用它自己的智慧

  • Instead, we would create an A.I. that uses its intelligence

    來學習我們的價值觀,

  • to learn what we value,

    它的激勵機制要設計成會讓它想要

  • and its motivation system is constructed in such a way that it is motivated

    來追求我們的價值觀或者去做它認為我們會贊成的事情。

  • to pursue our values or to perform actions that it predicts we would have approved of.

    藉此我們可以最大化地利用到它們的智慧

  • We would thus leverage its intelligence as much as possible

    來解決這個價值觀的問題。

  • to solve the problem of value-loading.

    這個是有可能的,

  • This can happen,

    而且這個的結果可對人類是非常有益的。

  • and the outcome could be very good for humanity.

    但是它不會自動發生。

  • But it doesn't happen automatically.

    如果我們需要控制這個智慧的大爆炸,

  • The initial conditions for the intelligence explosion

    那智慧大爆炸的初始條件

  • might need to be set up in just the right way

    需要被正確的建立起來。

  • if we are to have a controlled detonation.

    人工智慧的價值觀要和我們的一致,

  • The values that the A.I. has need to match ours,

    並不只是在常見的狀況下,

  • not just in the familiar context,

    比如我們可以很簡單低檢查它的行為,

  • like where we can easily check how the A.I. behaves,

    但也要在未來所有人工智慧可能會遇到的情況下

  • but also in all novel contexts that the A.I. might encounter

    保持價值觀的一致。

  • in the indefinite future.

    還有很多深奧的問題需要被解決:

  • And there are also some esoteric issues that would need to be solved, sorted out:

    它們決策概念的所有細節,

  • the exact details of its decision theory,

    它如何面對解決邏輯不確定性的情況等問題。

  • how to deal with logical uncertainty and so forth.

    所以技術上待解決的問題

  • So the technical problems that need to be solved to make this work

    讓這個任務看起來蠻難的 --

  • look quite difficult --

    還沒有像做出一個超級智慧那樣的難,

  • not as difficult as making a superintelligent A.I.,

    但還是挺難的。

  • but fairly difficult.

    我們所擔心的是:

  • Here is the worry:

    創造出一個超級智慧是一個很難的挑戰。

  • Making superintelligent A.I. is a really hard challenge.

    創造出一個安全的超級智慧

  • Making superintelligent A.I. that is safe

    是一個更大的挑戰。

  • involves some additional challenge on top of that.

    最大的風險在於有人想出了如何解決第一個難題

  • The risk is that if somebody figures out how to crack the first challenge

    但是沒有解決第二個問題

  • without also having cracked the additional challenge

    來確保安全性萬無一失。

  • of ensuring perfect safety.

    所以我覺得我們應該先想出

  • So I think that we should work out a solution

    如何"控制"的方法。

  • to the control problem in advance,

    這樣當我們需要的時候我們可以用的到它。

  • so that we have it available by the time it is needed.

    現在也許我們無法完全解決「控制」的問題

  • Now it might be that we cannot solve the entire control problem in advance

    因為有時候你要了解你所想要控制的架構後

  • because maybe some elements can only be put in place

    你才能知道如何實施。

  • once you know the details of the architecture where it will be implemented.

    但是如果我們可以事先解決更多的難題

  • But the more of the control problem that we solve in advance,

    我們順利的進入到機器智能時代的機率

  • the better the odds that the transition to the machine intelligence era

    就會更高。

  • will go well.

    這對我來說是一個值得挑戰的事情

  • This to me looks like a thing that is well worth doing

    而且我能想像到如果一切順利的話,

  • and I can imagine that if things turn out okay,

    我們的後代,幾百萬年以後的人類回顧我們這個時代的時候

  • that people a million years from now look back at this century

    他們可能會說我們所做的最重要的事就是

  • and it might well be that they say that the one thing we did that really mattered

    把這個事情弄對了。

  • was to get this thing right.

    謝謝

  • Thank you.

    (觀眾掌聲)

  • (Applause)

I work with a bunch of mathematicians, philosophers and computer scientists,

我和一群數學家、 哲學家、及電腦科學家一起工作。

Subtitles and vocabulary

Click the word to look it up Click the word to find further inforamtion about it

B1 UK TED 人工 人類 機器 ai 價值觀

【TED】尼克.波斯特羅姆: 當電腦比人類聰明時會發生什麼? (What happens when our computers get smarter than we are? | Nick Bostrom)

  • 17113 970
    CUChou posted on 2015/06/24
Video vocabulary