Subtitles section Play video
So in 1781, an English composer,
1781 年,一位英國作家、 工程師兼天文學家
technologist and astronomer called William Herschel
名叫威廉•赫歇爾,
noticed an object on the sky that
在浩瀚的夜空中觀測到一個天體,
didn't quite move the way the rest of the stars did.
其運行方式與其他恒星大相徑庭。
And Herschel's recognition that something was different,
赫歇爾覺得這個天體不同尋常,
that something wasn't quite right,
有些不太對勁,
was the discovery of a planet,
事實上他發現的是一顆行星,
the planet Uranus,
也就是我們熟知的天王星。
a name that has entertained
天王星這個名字
countless generations of children,
讓一代又一代年輕人興趣盎然,
but a planet that overnight
然而,這顆高懸於天際的行星
doubled the size of our known solar system.
一經發現便讓人類已知的 太陽系範圍整整擴大了一倍。
Just last month, NASA announced the discovery
就在上個月,美國太空總署 (NASA) 宣佈其又發現了
of 517 new planets
517 顆環繞近地恒星
in orbit around nearby stars,
運行的行星,
almost doubling overnight the number of planets
幾乎在一夜間使銀河系中
we know about within our galaxy.
已知的行星數量翻了一倍。
So astronomy is constantly being transformed by this
人類收集的資料資訊 為天文學的不斷進步
capacity to collect data,
注入了源源不斷的動力,
and with data almost doubling every year,
而這些資料資訊幾乎 以每年翻一倍的速度增長,
within the next two decades, me may even
未來二十年內,人類甚至可以
reach the point for the first time in history
首次實現有史以來的一個夢想:
where we've discovered the majority of the galaxies
探索浩瀚宇宙中
within the universe.
的大部分星系。
But as we enter this era of big data,
但是,人類開闢的是一個大資料資訊的時代,
what we're beginning to find is there's a difference
我們開始探究的是
between more data being just better
資料資訊越多越好
and more data being different,
與資料資訊越多差別越大, 兩者之間有何差異,
capable of changing the questions we want to ask,
這足以改變我們想問的一些問題,
and this difference is not about how much data we collect,
這個差異並不在於我們收集多少資料資訊,
it's whether those data open new windows
而是,那些資料資訊是否可以 為人類開啟一扇通往深邃宇宙的窗戶,
into our universe,
那些資料資訊是否有助於 改變人類對觀測天空的方式。
whether they change the way we view the sky.
下一扇通往宇宙的窗戶會有何奧秘呢?
So what is the next window into our universe?
人類將如何譜寫天文學的下一個篇章?
What is the next chapter for astronomy?
好,我會向諸位介紹一下
Well, I'm going to show you some of the tools and the technologies
未來十年內人類將開發的一些工具與技術,
that we're going to develop over the next decade,
這些先進技術,連同人類
and how these technologies,
在運用資料資訊上展現的聰明才智,
together with the smart use of data,
將再一次開啟一扇通往宇宙的窗戶
may once again transform astronomy
使天文學發生革命性的變化,
by opening up a window into our universe,
時間之窗。
the window of time.
為什麼是時間?好,時間與起源
Why time? Well, time is about origins,
和進化息息相關。
and it's about evolution.
太陽系的起源、
The origins of our solar system,
太陽系是如何形成的、
how our solar system came into being,
有什麼不同尋常或獨特之處嗎?
is it unusual or special in any way?
關於宇宙的演化。
About the evolution of our universe.
為什麼宇宙處於不斷的膨脹中?
Why our universe is continuing to expand,
促使宇宙膨脹的
and what is this mysterious dark energy
神秘暗能量是什麼呢?
that drives that expansion?
首先,我要向諸位介紹科學技術
But first, I want to show you how technology
將有望改變人類對觀測天空的方式。
is going to change the way we view the sky.
不妨設想一下,如果你在
So imagine if you were sitting
智利北部山區
in the mountains of northern Chile
仰望西天,
looking out to the west
面向太平洋方向,
towards the Pacific Ocean
就在日出前幾個小時。
a few hours before sunrise.
這便是你將親眼目睹的夜空,
This is the view of the night sky that you would see,
景色美麗動人,
and it's a beautiful view,
銀河懸掛於天際。
with the Milky Way just peeking out over the horizon.
但眼前是一幅靜止的美景,
but it's also a static view,
而很多時候這也正是 我們腦海中勾勒出的宇宙:
and in many ways, this is the way we think of our universe:
永恆不滅且一成不變。
eternal and unchanging.
但宇宙絕不是靜止的。
But the universe is anything but static.
宇宙處於永恆的變化中, 變化時間各不相同
It constantly changes on timescales of seconds
有短短幾秒,也有幾十億年。
to billions of years.
不同的星系
Galaxies merge, they collide
在以幾十萬英里的時速融合、碰撞。
at hundreds of thousands of miles per hour.
恒星不斷誕生,也不斷消亡,
Stars are born, they die,
這些絢麗多彩的畫面展示了恒星的爆炸。
they explode in these extravagant displays.
事實上,如果可以回到
In fact, if we could go back
智利遙望寧靜的夜空,
to our tranquil skies above Chile,
我們讓時間長河向前流淌
and we allow time to move forward
一覽未來十年的天空, 會呈現出什麼模樣,
to see how the sky might change over the next year,
你會觀察到宇宙的脈動
the pulsations that you see
正是超新星,恒星在消亡中留下的殘餘,
are supernovae, the final remnants of a dying star
爆炸、發出耀眼的光芒, 然後逐漸消失在視野中,
exploding, brightening and then fading from view,
任何一顆超新星
each one of these supernovae
都比太陽亮上五十億倍,
five billion times the brightness of our sun,
因此,人類在相當遙遠的地方 就能發現它們的蹤跡
so we can see them to great distances
但其光芒轉瞬即逝。
but only for a short amount of time.
宇宙中每一秒都會 有十顆超新星發生爆炸。
Ten supernova per second explode somewhere
如果我們可以聽見爆炸聲,
in our universe.
會同一袋爆米花爆開的聲音一樣。
If we could hear it,
超新星的光芒逐漸暗淡,
it would be popping like a bag of popcorn.
這不只是亮度的變化。
Now, if we fade out the supernovae,
天空處於永恆的運動之中。
it's not just brightness that changes.
你會看到大量天體源源不斷地掠過天空
Our sky is in constant motion.
這些是環繞太陽運行的小行星,
This swarm of objects you see streaming across the sky
正是這些變化與運動
are asteroids as they orbit our sun,
以及天體系統的動態變化
and it's these changes and the motion
讓我們得以創建宇宙的模型,
and it's the dynamics of the system
便於我們解讀過去,展望未來。
that allow us to build our models for our universe,
然而,過去十年裡,我們使用的望遠鏡
to predict its future and to explain its past.
其設計初衷並非用於 收集如此大規模的資料資訊。
But the telescopes we've used over the last decade
哈伯太空望遠鏡:
are not designed to capture the data at this scale.
在過去二十五年內,
The Hubble Space Telescope:
已為人類生成了部分宇宙深處
for the last 25 years it's been producing
最生動具體的畫面,
some of the most detailed views
不過,若要使用哈伯太空望遠鏡 去還原一幅天空全景圖,
of our distant universe,
則需要彙聚 1300 萬個獨立的景象,
but if you tried to use the Hubble to create an image
即使一次也得歷時 120 年之久。
of the sky, it would take 13 million individual images,
面對這一形勢,我們必須開發新技術
about 120 years to do this just once.
並建造全新的望遠鏡,
So this is driving us to new technologies
這些望遠鏡不僅觀測距離更遠,
and new telescopes,
讓人類深入宇宙腹地。
telescopes that can go faint
而且觀測視野更寬,
to look at the distant universe
可迅速拍攝天空中的一舉一動,
but also telescopes that can go wide
像大口徑全景巡天望遠鏡之類的望遠鏡
to capture the sky as rapidly as possible,
又稱為 LSST。
telescopes like the Large Synoptic Survey Telescope,
縱觀天文學歷史,
or the LSST,
在所有最有趣的科學實驗中
possibly the most boring name ever
這個名稱算是最最無聊的,
for one of the most fascinating experiments
事實上,你如果非得有個名稱,
in the history of astronomy,
那千萬別讓科學家或工程師來命名,
in fact proof, if you should need it,
甚至不要讓他們為你的孩子起名字。(笑聲)
that you should never allow a scientist or an engineer
LSST 工程已開工建設。
to name anything, not even your children. (Laughter)
有望於2020年年底前開始收集資料資訊。
We're building the LSST.
我將為諸位解讀一下我們的思維方式
We expect it to start taking data by the end of this decade.
這將轉變我們對宇宙的認識,
I'm going to show you how we think
因為 LSST 拍攝的每個圖像
it's going to transform our views of the universe,
相當於哈伯太空望遠鏡拍攝的 3000 個圖像,
because one image from the LSST
LSST 的每個圖像覆蓋了天空中 3.5 度的區域,
is equivalent to 3,000 images
相當於七個滿月的寬度。
from the Hubble Space Telescope,
如何拍攝這麼大的圖像呢?
each image three and a half degrees on the sky,
那就得製造有史以來最大的數位相機,
seven times the width of the full moon.
採用的技術與你的手機鏡頭
Well, how do you capture an image at this scale?
或在大街上購買的數位相機 採用的技術完全相同,
Well, you build the largest digital camera in history,
而眼下這個數位相機的鏡頭 足足寬5.5英尺,
using the same technology you find in the cameras in your cell phone
相當於一輛福斯金龜車的長度,
or in the digital cameras you can buy in the High Street,
這個鏡頭拍攝的每個圖像 有30億個圖元。
but now at a scale that is five and a half feet across,
因此,如果你想一睹 LSST 全解析度圖像的風采,
about the size of a Volkswagen Beetle,
哪怕只是一個圖像,
where one image is three billion pixels.
也得用 1500 個高清電視螢幕。
So if you wanted to look at an image
這台相機將用於拍攝天空的全景,
in its full resolution, just a single LSST image,
每隔 20 秒鐘拍攝一張照片,
it would take about 1,500 high-definition TV screens.
永不停息地掃描天空。
And this camera will image the sky,
這樣只要三個夜晚, 我們就能掃描一次天空,
taking a new picture every 20 seconds,
重新繪製一幅智利上空的天空全景圖。
constantly scanning the sky
這台望遠鏡會在其生命週期內
so every three nights, we'll get a completely new view
探測 400 億恒星與星系,
of the skies above Chile.
這也會是我們首次
Over the mission lifetime of this telescope,
能探索的宇宙天體數量
it will detect 40 billion stars and galaxies,
超過地球上的人口數。
and that will be for the first time
目前,我們可以按
we'll have detected more objects in our universe
百萬位元組與十億位元組, 通過研究數十億個天體
than people on the Earth.
來解讀宇宙,
Now, we can talk about this
但如果想要親身感受一下
in terms of terabytes and petabytes
這款相機收集的訊息量,
and billions of objects,
好比同時播放已錄製的每一個 TED 演講,
but a way to get a sense of the amount of data
一天二十四小時,
that will come off this camera
一周七天不停地播放,可以長達連續十年。
is that it's like playing every TED Talk ever recorded
若要處理這些資料資訊,則如同
simultaneously, 24 hours a day,
在所有訪談節目中搜索
seven days a week, for 10 years.
每一個全新的觀點與理念,
And to process this data means
關注影片中的每個細節。
searching through all of those talks
查看每一幀內容
for every new idea and every new concept,
有何變化。
looking at each part of the video
我們正在開闢一個科學研究的新紀元,
to see how one frame may have changed
顛覆天文學研究的傳統模式,
from the next.
在全新的模式下人們 將運用軟體技術與演算法則
And this is changing the way that we do science,
挖掘隱藏在資料資訊中的無窮奧秘,
changing the way that we do astronomy,
屆時軟體技術對科學研究至關重要,
to a place where software and algorithms
其重要性並不亞於這些 尚未問世的望遠鏡與相機。
have to mine through this data,
目前,這個專案將為人類
where the software is as critical to the science
開啟成千上萬的探索發現之門,
as the telescopes and the cameras that we've built.
但我今天只向諸位講述
Now, thousands of discoveries
有關起源與進化的兩個理念
will come from this project,
這兩個理念也會隨著人們
but I'm just going to tell you about two
對大規模資料資訊的研究而不斷發展。
of the ideas about origins and evolution
過去五年內,NASA 已在近地恒星
that may be transformed by our access
附近發現了 1000 多個行星系,
to data at this scale.
但我們力求探尋的這些行星系
In the last five years, NASA has discovered
並不十分類似於我們的太陽系。
over 1,000 planetary systems
我們面臨的一個問題是
around nearby stars,
究竟是人類對宇宙的觀測還不夠全面,
but the systems we're finding
還是我們太陽系的起源
aren't much like our own solar system,
本來就與眾不同?
and one of the questions we face is
如果我們要解答這一問題,
is it just that we haven't been looking hard enough
就得深入瞭解
or is there something special or unusual
太陽系的前世與今生,
about how our solar system formed?
這些具體資訊十分重要。
And if we want to answer that question,
因此,時下當我們仰望星空,
we have to know and understand
無數小行星掠過天際,
the history of our solar system in detail,
彷彿是太陽系中遺落的殘骸。
and it's the details that are crucial.
小行星所處的位置
So now, if we look back at the sky,
就像海王星與木星早期運行軌道,
at our asteroids that were streaming across the sky,
離太陽更近的時候在
these asteroids are like the debris of our solar system.
宇宙中留下的指紋,
The positions of the asteroids
這些體積巨大的行星在太陽系中遷徙,
are like a fingerprint of an earlier time
一路遺落不計其數的小行星。
when the orbits of Neptune and Jupiter
因此,探究小行星就像
were much closer to the sun,
在進行法醫鑒定,
and as these giant planets migrated through our solar system,
對整個太陽系的法醫鑒定。
they were scattering the asteroids in their wake.
但為此,我們需要距離,
So studying the asteroids
通過天體的運行,可以得知距離,
is like performing forensics,
而由於對時間掌握, 我們才瞭解了天體的運行。
performing forensics on our solar system,
我們可以從中得到什麼啟示呢?
but to do this, we need distance,
你是否注意到一些黃色小行星
and we get the distance from the motion,
匆匆掠過螢幕,
and we get the motion because of our access to time.
這些小行星的運行速度很快,
So what does this tell us?
是因為它們距離地球最近。
Well, if you look at the little yellow asteroids
有朝一日人類或許會派 太空船造訪這些行星
flitting across the screen,
開發上面的礦產資源,
these are the asteroids that are moving fastest,
但這些小行星或許會在未來的某一天
because they're closest to us, closest to Earth.
撞擊地球,
These are the asteroids we may one day
就像 6000 萬年前的那次撞擊
send spacecraft to, to mine them for minerals,
造成了恐龍的滅絕,
but they're also the asteroids that may one day
也像上世紀初葉
impact the Earth,
一顆小行星徑直墜落於西伯利亞,
like happened 60 million years ago
1000 平方英里的森林頓時化為烏有,
with the extinction of the dinosaurs,
甚至就在去年,有一顆小行星 在俄羅斯上空的大氣層內燒毀,
or just at the beginning of the last century,
釋放的能量相當於一個小型核彈。
when an asteroid wiped out
因此,對太陽系進行法醫鑒定
almost 1,000 square miles of Siberian forest,
不只能讓我們瞭解過去,
or even just last year, as one burnt up over Russia,
更可以展望未來,包括人類自身的未來。
releasing the energy of a small nuclear bomb.
眼下只要我們得知距離,
So studying the forensics of our solar system
就能觀察到小行星以其自然的方式,
doesn't just tell us about the past,
環繞太陽運行。
it can also predict the future, including our future.
所以,諸位在這幅景象中 看到的每一個亮點
Now when we get distance,
都是一顆真實的小行星。
we get to see the asteroids in their natural habitat,
憑藉這顆小行星在空中的運行狀況, 就能計算出其運行軌跡。
in orbit around the sun.
這些小行星的顏色顯示了其組成物質,
So every point in this visualization that you can see
中心部分是乾燥的岩石,
is a real asteroid.
而表面卻粗糙不平,富含水分,
Its orbit has been calculated from its motion across the sky.
含水量較高的小新星上可能會有
The colors reflect the composition of these asteroids,
和地球上一模一樣的海洋,
dry and stony in the center,
地球上的海洋正是小行星 早年撞擊地球後留下的。
water-rich and primitive towards the edge,
由於 LSST 不僅觀察視野更寬,
water-rich asteroids which may have seeded
而且探測距離更遠。
the oceans and the seas that we find on our planet
我們將在遠離太陽系中心的區域
when they bombarded the Earth at an earlier time.
一窺這些小行星的身影,
Because the LSST will be able to go faint
觀察木星與火星軌道之外的小行星,
and not just wide,
跟蹤距離太陽
we will be able to see these asteroids
幾乎一光年之遙的彗星與小行星。
far beyond the inner part of our solar system,
我們會更加詳細地解讀這些照片
to asteroids beyond the orbits of Neptune and Mars,
將解讀細節從 10 個提高到 100 個,
to comets and asteroids that may exist
就能找到一些問題的答案,例如
almost a light year from our sun.
是否有證據顯示木星軌道之外還存在行星,
And as we increase the detail of this picture,
在可能撞擊地球的小行星威脅地球之前很久
increasing the detail by factors of 10 to 100,
便鎖定它們的行蹤,
we will be able to answer questions such as,
並解答太陽只有一個
is there evidence for planets outside the orbit of Neptune,
還是宇宙中存在一大把這樣的恒星,
to find Earth-impacting asteroids
或許正是太陽的姊妹星
long before they're a danger,
對太陽系的形成產生了巨大的影響,
and to find out whether, maybe,
或許這正是太陽系在宇宙中 如此罕見的原因之一。
our sun formed on its own or in a cluster of stars,
宇宙中的距離與變化,
and maybe it's this sun's stellar siblings
距離等於時間,
that influenced the formation of our solar system,
以及天空中的變化。
and maybe that's one of the reasons why solar systems like ours seem to be so rare.
你的目光每延伸一英尺
Now, distance and changes in our universe —
或某一個天體運行每一英尺,
distance equates to time,
其實在諸位眼睛中留下的景象 是之前十億分之一秒發生的事情,
as well as changes on the sky.
眺望宇宙就是眺望過去的時光
Every foot of distance you look away,
這個觀點或概念讓我們 對宇宙的認識發生了革命性的變化,
or every foot of distance an object is away,
這種變化不止一次,而是多次。
you're looking back about a billionth of a second in time,
第一次發生在 1929 年,
and this idea or this notion of looking back in time
一位名叫愛德文·哈伯的天文學家
has revolutionized our ideas about the universe,
指出宇宙處在不斷的膨脹中,
not once but multiple times.
形成了宇宙大爆炸觀點。
The first time was in 1929,
觀察結果非常簡單:
when an astronomer called Edwin Hubble
只有 24 個星系
showed that the universe was expanding,
和一張手工繪製的圖片。
leading to the ideas of the Big Bang.
但星系的距離越遠,
And the observations were simple:
它遠離我們的速度就越快,
just 24 galaxies
這一觀點足以促成現代宇宙學的誕生。
and a hand-drawn picture.
第二次革命發生在 70 年後,
But just the idea that the more distant a galaxy,
兩組天文學家指出
the faster it was receding,
宇宙不僅在不斷地膨脹,
was enough to give rise to modern cosmology.
而且正在加速膨脹。
A second revolution happened 70 years later,
這個觀點令人驚訝, 好比將一個球拋到空中,
when two groups of astronomers showed
你會發現這個球離地面越高,
that the universe wasn't just expanding,
飛行的速度也越快。
it was accelerating,
他們展示研究結果的方法是
a surprise like throwing up a ball into the sky
通過測量超新星的亮度,
and finding out the higher that it gets,
和超新星的亮度
the faster it moves away.
如何隨著距離增加而不斷減弱。
And they showed this
這些觀察結果更加複雜。
by measuring the brightness of supernovae,
於是新技術與全新的望遠鏡呼之欲出,
and how the brightness of the supernovae
由於超新星存在於一些星系中
got fainter with distance.
而這些星系比哈伯望遠鏡
And these observations were more complex.
拍攝到的星系還要遠 2000 倍。
They required new technologies and new telescopes,
經過三年鍥而不捨的觀察, 只發現了 42 顆超新星,
because the supernovae were in galaxies
由於一個星系中的超新星
that were 2,000 times more distant
幾百年中才爆炸一次。
than the ones used by Hubble.
整整三年才發現了 42 顆超新星,
And it took three years to find just 42 supernovae,
搜索了成千上萬個星系。
because a supernova only explodes
收集了這些資料資訊,
once every hundred years within a galaxy.
這是他們發現的。
Three years to find 42 supernovae
這一研究成果可能看上去不起眼,
by searching through tens of thousands of galaxies.
但可以堪稱物理學上的一次革命:
And once they'd collected their data,
這條直線預測距離地球 110 億光年之遙的超新星亮度,
this is what they found.
一些小點與這條直線並不十分吻合。
Now, this may not look impressive,
細微的變化往往會催生重大結果。
but this is what a revolution in physics looks like:
細微的變化讓我們實現突破,探索發現,
a line predicting the brightness of a supernova
就像赫歇爾當年發現天王星一樣。
11 billion light years away,
細微的變化顛覆了
and a handful of points that don't quite fit that line.
我們對浩瀚宇宙的理解。
Small changes give rise to big consequences.
因此,42 顆超新星,十分昏暗,
Small changes allow us to make discoveries,
可見其距離地球稍遠,
like the planet found by Herschel.
由此可推斷宇宙肯定不只是在膨脹,
Small changes turn our understanding
而是在加速膨脹。
of the universe on its head.
揭示了宇宙的一個組成部分
So 42 supernovae, slightly too faint,
就是我們目前所稱的暗能量,
meaning slightly further away,
正是暗能量在加速宇宙的膨脹,
requiring that a universe must not just be expanding,
已知宇宙中的能量預計有68%為暗能量。
but this expansion must be accelerating,
下一次革命可能會發生在哪個領域?
revealing a component of our universe
暗能量是什麼,暗能量為什麼會存在?
which we now call dark energy,
每一條直線為我們展現了
a component that drives this expansion
一種不同的暗能量可能存在的模式
and makes up 68 percent of the energy budget
揭示了暗能量的各種屬性。
of our universe today.
已發現的 42 個亮點完全符合這些屬性,
So what is the next revolution likely to be?
但隱藏在這些直線背後的理念
Well, what is dark energy and why does it exist?
則截然不同。
Each of these lines shows a different model
有人設想暗能量
for what dark energy might be,
隨著時間的流逝而變化,
showing the properties of dark energy.
或是暗能量的屬性是否不同,
They all are consistent with the 42 points,
取決於你觀察天空時所處的地點。
but the ideas behind these lines
其他人則在亞原子的層面
are dramatically different.
釐定物理學上的差異與變化。
Some people think about a dark energy
或者,他們關注
that changes with time,
重力與廣義相對論作用的規模與變化,
or whether the properties of the dark energy
或他們覺得我們的宇宙只是
are different depending on where you look on the sky.
這個神秘莫測的多元宇宙中的一部分而已,
Others make differences and changes
但是所有這些觀點、理論
to the physics at the sub-atomic level.
非常不可思議,毋庸置疑 其中一些稍稍有些瘋狂,
Or, they look at large scales
但所有這些觀點與理論 都於我們發現的 42 個亮點相互印證。
and change how gravity and general relativity work,
因此,我們如何在未來十年內
or they say our universe is just one of many,
理解其中的奧秘?
part of this mysterious multiverse,
設想一下,如果給你兩個骰子,
but all of these ideas, all of these theories,
我問你如何知道這兩個骰子
amazing and admittedly some of them a little crazy,
是不是被人做了手腳。
but all of them consistent with our 42 points.
只投一次骰子,你得不出什麼結論,
So how can we hope to make sense of this
但多投幾次,
over the next decade?
積攢起數據,
Well, imagine if I gave you a pair of dice,
就會對自己更有信心,
and I said you wanted to see whether those dice
不僅知道這些骰子 有沒有被人做過手腳,
were loaded or fair.
而且還知道做了多少手腳, 而且怎麼做的。
One roll of the dice would tell you very little,
我們歷時整整三年 才發現了 42 個超新星,
but the more times you rolled them,
因為我們已建造的望遠鏡
the more data you collected,
只能探索天空中的很小一部分。
the more confident you would become,
有了 LSST,每三個夜晚我們就可以觀察到
not just whether they're loaded or fair,
智利上空的一個全新景象。
but by how much, and in what way.
觀測的第一個夜晚,
It took three years to find just 42 supernovae
發現的超新星的數量, 就會是當初發現暗能量時
because the telescopes that we built
所用的超新星數量的整整十倍。
could only survey a small part of the sky.
最初的四個月內的觀測數字將提升 1000:
With the LSST, we get a completely new view
這次觀察後會發現 150 萬顆超新星,
of the skies above Chile every three nights.
每一顆超新星就像投一次骰子
In its first night of operation,
每一個超新星測試哪些暗能量理論吻合,
it will find 10 times the number of supernovae
哪些不吻合。
used in the discovery of dark energy.
所以,這些超新星資料資訊會
This will increase by 1,000
與宇宙學的其他措施相結合,
within the first four months:
我們會逐步篩除
1.5 million supernovae by the end of its survey,
不同的暗能量觀點與理論,
each supernova a roll of the dice,
此次觀察有望在 2030 年左右結束,
each supernova testing which theories of dark energy
我們希望屆時發現
are consistent, and which ones are not.
一種宇宙理論,
And so, by combining these supernova data
一種宇宙物理的基本理論
with other measures of cosmology,
漸漸顯出雛形。
we'll progressively rule out the different ideas
我在許多領域提出過一些問題
and theories of dark energy
實際上都是最簡單的問題。
until hopefully at the end of this survey around 2030,
但答案至今無從知曉,
we would expect to hopefully see
但我們至少知道該如何提問。
a theory for our universe,
但是如果縱觀成千上萬個星系
a fundamental theory for the physics of our universe,
結果只發現了 42 顆超新星,
to gradually emerge.
足以轉變我們對茫茫宇宙的理解,
Now, in many ways, the questions that I posed
當我們專注於研究數十億星系,
are in reality the simplest of questions.
我們費盡周折只發現了 42 個亮點, 這顯然不符合我們的期望值,
We may not know the answers,
但這樣事倍功半的事情還會發生多少次呢?
but we at least know how to ask the questions.
就像赫歇爾發現天王星
But if looking through tens of thousands of galaxies
或暗能量,
revealed 42 supernovae that turned
或量子力學或廣義相對論,
our understanding of the universe on its head,
這些理論的產生,都是因為資訊
when we're working with billions of galaxies,
並不符合我們的期望,
how many more times are we going to find
天文學資訊的下一個十年
42 points that don't quite match what we expect?
激動人心的一面正是
Like the planet found by Herschel
我們甚至不知道會有多少問題
or dark energy
等待著我們去解答,
or quantum mechanics or general relativity,
這些解答關乎宇宙起源與演化。
all ideas that came because the data
還有多少解答已經擺在面前,
didn't quite match what we expected.
但我們甚至不知道
What's so exciting about the next decade of data
要問些什麼?
in astronomy is,
謝謝。
we don't even know how many answers
(掌聲)
are out there waiting,
answers about our origins and our evolution.
How many answers are out there
that we don't even know the questions
that we want to ask?
Thank you.
(Applause)