Subtitles section Play video
Humans can discern between 2.3 million colours - but try staring at this picture of us bursting
人類可以分辨兩百三十萬種的顏色 - 試著盯著這張我們兩個人在中間的
through the periodic table and focus on the green dot as we invert the colours. Don’t
元素週期表並且在反白後專注盯著那個綠色的點
stop staring there until I say. The light is travelling as a wave to your eye, and the
在我說好之前請不要看別的地方。光以波的形式傳遞到你的眼睛
frequency of these wavelengths determines the perceived colour of everything in this
而這些波的頻率決定了你在這個圖案以及你周遭所能看到的顏色
picture and around you. Humans have trichromatic vision, meaning we have three cone cells in
人類擁有三色視覺,意味著我們視網膜上有三個種視錐細胞
our retinas, each which are sensative to different wavelengths of light: blue, green or red.
每一種都可以感受到不同的光波長:藍色,綠色或紅色
Keep looking at the green dot and your brain will do something pretty neat. Did the image
不斷盯著綠點,然後你的大腦會作出很妙的反應。
change back to the original colour? Even though you were staring at a black and white image,
影像有變回原來的樣子嗎? 就算你看著黑白的影像
your brain perceived it to be in colour.
你的大腦還是覺得這是個有顏色的影像
This phenomenon is known as ‘after imaging’ - after staring long enough at the brightly
這種現象被稱為視覺殘留 - 在長時間盯著一個具有明亮色彩的影像之後
coloured image, your cones slowly become fatigued and the supply of photopigment in the respective
你的視錐細胞會慢慢變得疲勞,而且會耗盡視錐細胞內的感光色素
cones becomes exhausted, which ultimately stops sending signals to the brain. In the
進而停止向大腦輸送信號
case of this illusion, the part of the photo where you see cyan, the green and blue cones
在這個錯覺實驗裡,你所看到青色的部分之所以會變色,是因為綠色跟藍色的視錐細胞
become tired and as a result there is increased activity in the unfatigued red cones. So when
變得疲勞,進而增加了紅色視錐細胞的活性。所以
the image switched to black and white we see ‘red’ - cyan’s complementary colour.
當影像轉成黑白時,我們會看到紅色,也就是青色的互補色
Growing up, you likely learned about the primary colours red, yellow and blue - and their respective
你小時候可能已經學過色彩三原色:紅色、黃色跟藍色,以及它們各自的互補色
complementary colours. But things are more complicated when you consider that the primary
但顏色其實是很複雜的,在印表機裡,三原色是
colours in your printer are magenta, yellow and cyan, or that the screen you’re watching
紫紅色、黃色跟青色,而你現在正在看的螢幕
this on uses red, green and blue! These are different colour models, where RGB is ‘additive’
則是使用紅色、綠色跟藍色為三原色。這是不同的顏色模式,紅綠藍模式使用的是「加法」
meaning the mixing of different lights of colour create new colours - while the other
代表著混合不同的光,可以製造出新的顏色,而另外兩種模式
two are ‘subtractive’ models and absorb different wavelengths of light.
是使用「減法」,會吸收掉不同波長的光
For example, when you hold a yellow object in real life (don’t use a lemon), it’s
舉例來說,在現實生活中拿著一個黃色物體時(別用檸檬)
actually absorbing every wavelength except yellow - that yellow light bounces back and
實際上,它吸收了黃光之外的所有光的波長 - 而黃光會被反射到
hits your eyes. But, when you look at this yellow object through your screen right now it’s actually
你的眼睛。但是當你現在看著電腦螢幕上的黃色物體時,它實際上
not yellow at all. Because your screen can only use red, green, and blue colours,
並不是黃色的。因為螢幕只能用紅色、綠色跟藍色
if you were to zoom in physically on anything yellow, it would actually be a combination
如果你放大檢視任何黃色的物體,就可以發現它其實結合了
of red and green - and because the wavelength of yellow is between red and green, our brain
紅色跟綠色 - 而因為黃光波長介於紅光跟綠光之間,讓我們的大腦
interprets this mix as yellow. (YELLOW SCREEN) So what you’re seeing here is in fact not
將這個混合體解讀成黃色。所以你目前看到的根本不是黃色
yellow at all, but it’s stimulating a mix of your red and green cones, which your brain
但是它刺激了紅色與綠色的視錐細胞,讓你的大腦
interprets as yellow.
認為它是黃的
While plants come in a range of colours, the predominant colour is green, due to chlorophyll,
植物有很多不同的顏色,但是大部分是綠色的,因為它們有葉綠素
the energy absorbing pigment found in plants critical for photosynthesis. So, to effectively
也就是光合作用中可以吸收光的色素。所以為了有效的
attract pollinators such as bees, insects and birds, flowers have evolved to stand out
吸引蜜蜂、昆蟲及鳥類等授粉者,花就必須要萬綠叢中一點紅
against green. It’s why you don’t see many green flowers. And flowering plants have
這也就是為什麼沒什麼綠色的花。而且開花植物
even evolved a suite of different colours to attract specific pollinators - known as
甚至不同顏色的花來吸引特定的授粉者 -
pollinator syndrome. Bird-pollinated flowers are mostly red, potentially to discourage
我們將此稱為授粉者特徵。以鳥為授粉者的花通常為紅色來避免
visits from bees, as their visual system is different than birds, making it hard from
蜜蜂前來,因為蜜蜂的視覺系統與鳥類不同,造成蜜蜂們很難分辨
them to discriminate between red and green.
紅色與綠色
Similarly, we all have our own favourite colours, but why? One theory suggests that colour preference
相同的,我們都有自己最喜歡的顏色,但是為什麼呢?有一套理論指出顏色的偏好
is gendered, where given the choice between cyan and red, men prefer cyan colours and
與性別有關,當有青色跟紅色可以選擇,男性會選青色
women prefer redder colours. Researchers hypothesize this preference has evolved from our hunter-gatherer
而女性會選偏紅的顏色。研究者們提出假說認為這個偏好是從狩獵-採集的社會演化而來的
societies where women's visual systems were specialized to see ripe red berries against
因為女性的視覺系統在那時要負責找到紅漿果而不是綠樹葉
green foliage. Another theory suggest that we like hues that we associate with pleasant
另一套理論則是說,我們喜歡某種顏色是因為把顏色跟開心的事物連接在一起
things - however, pleasant and unpleasant things are often the same colour - we love blue slurpee
儘管開心與不開心的東西常常會有相同顏色 - 我們喜歡藍色的思樂冰
but not blue mold.
而不是藍色黴菌。
Investigating these questions of colour had us thinking about links between science and
探索這些顏色的問題使我們想要了解科學與藝術之間的關聯
art. So in our latest AsapTHOUGHT we asked both artists and scientists about how they
所以在我們最新一期的 AsapTHOUGHT 中,我們訪問了藝術家跟科學家
view their world.
想要了解他們對世界的看法
Check it out with the link in the description
從影片資訊那邊點一下連結來看看這新的一集
and subscribe for more weekly science videos.
並訂閱更多的每周科學影片吧!