Placeholder Image

Subtitles section Play video

  • Up until now, our communication with machines

    譯者: Jeannie Cheng 審譯者: Sunshine Wang

  • has always been limited

    直到現在,我們與機器的溝通

  • to conscious and direct forms.

    仍局限於

  • Whether it's something simple

    有意識和直接的模式

  • like turning on the lights with a switch,

    不論是一些簡單的事情

  • or even as complex as programming robotics,

    如用開關開燈

  • we have always had to give a command to a machine,

    或一些複雜的程式來控制機械人

  • or even a series of commands,

    我們都要給機器輸入一個

  • in order for it to do something for us.

    甚至一系列的指令

  • Communication between people, on the other hand,

    才能命令它執行一些動作

  • is far more complex and a lot more interesting

    相反的,人與人的溝通

  • because we take into account

    就更加複雜和有趣得多

  • so much more than what is explicitly expressed.

    因為我們會考慮到

  • We observe facial expressions, body language,

    言語未表達的言外之意

  • and we can intuit feelings and emotions

    我們會觀察表情、肢體語言

  • from our dialogue with one another.

    在對話中我們會用直覺來

  • This actually forms a large part

    感受對方的感覺和情緒

  • of our decision-making process.

    這些都是做決定時

  • Our vision is to introduce

    一些重要的因素

  • this whole new realm of human interaction

    我們的願景是引進

  • into human-computer interaction

    全新的人與電腦的互動科技

  • so that computers can understand

    到人類互動的領域

  • not only what you direct it to do,

    這麼一來電腦不只可以

  • but it can also respond

    明白你指示它所做的事情

  • to your facial expressions

    而且也會對面部表情

  • and emotional experiences.

    和情緒經歷

  • And what better way to do this

    作出反應

  • than by interpreting the signals

    還有什麼比從大腦的

  • naturally produced by our brain,

    情感控制中樞直接解譯

  • our center for control and experience.

    大腦產生的電波

  • Well, it sounds like a pretty good idea,

    來得更好呢?

  • but this task, as Bruno mentioned,

    這聽起來好像是不錯的主意

  • isn't an easy one for two main reasons:

    但這個任務,正如Bruno所說

  • First, the detection algorithms.

    並不容易,原因有兩個

  • Our brain is made up of

    第一是大腦的偵查演算法

  • billions of active neurons,

    我們的腦是由

  • around 170,000 km

    數十億個活躍的神經元所組成

  • of combined axon length.

    如果把神經細胞的軸索連在一起

  • When these neurons interact,

    大概有十七萬公里

  • the chemical reaction emits an electrical impulse,

    這些神經元互動時

  • which can be measured.

    產生的化學作用所發射出的電脈衝

  • The majority of our functional brain

    能夠被測量到

  • is distributed over

    大部分功能性腦

  • the outer surface layer of the brain,

    是分佈在

  • and to increase the area that's available for mental capacity,

    大腦的表層

  • the brain surface is highly folded.

    心智能力功能也位於此,為了增加表面積

  • Now this cortical folding

    大腦皮質層有非常多的褶皺

  • presents a significant challenge

    大腦皮質褶皺

  • for interpreting surface electrical impulses.

    對分析電脈衝

  • Each individual's cortex

    帶來一個很大的挑戰

  • is folded differently,

    每個人大腦皮質層

  • very much like a fingerprint.

    的褶皺都不同

  • So even though a signal

    就像指紋一樣

  • may come from the same functional part of the brain,

    因此電脈衝訊息

  • by the time the structure has been folded,

    雖然來自功能腦同樣的區域

  • its physical location

    但大腦皮質褶皺結構早已形成

  • is very different between individuals,

    在不同的人的大腦裡

  • even identical twins.

    即使是雙胞胎

  • There is no longer any consistency

    訊息發生位置也不同

  • in the surface signals.

    大腦皮質層電脈衝訊息

  • Our breakthrough was to create an algorithm

    沒有一致性

  • that unfolds the cortex,

    我們的突破是建立一個演算法

  • so that we can map the signals

    攤開大腦皮質層

  • closer to its source,

    去勘測這些

  • and therefore making it capable of working across a mass population.

    訊息的原點

  • The second challenge

    繼而把它運用在大眾身上

  • is the actual device for observing brainwaves.

    第二項挑戰是

  • EEG measurements typically involve

    觀察腦電波的儀器

  • a hairnet with an array of sensors,

    腦波測量基本上包括

  • like the one that you can see here in the photo.

    一個有許多感應器的髮網

  • A technician will put the electrodes

    就像現在圖中所看到的

  • onto the scalp

    技術人員會把電極

  • using a conductive gel or paste

    用導電的膠或漿糊

  • and usually after a procedure of preparing the scalp

    固定在頭皮上

  • by light abrasion.

    這個準備程序需要在頭皮製造

  • Now this is quite time consuming

    輕微的擦傷

  • and isn't the most comfortable process.

    這個程序既費時

  • And on top of that, these systems

    又不舒服

  • actually cost in the tens of thousands of dollars.

    再加上,這些系統

  • So with that, I'd like to invite onstage

    非常昂貴,得花上數萬美金

  • Evan Grant, who is one of last year's speakers,

    現在,我邀請Evan Grant

  • who's kindly agreed

    去年的演講者上台

  • to help me to demonstrate

    他很樂意

  • what we've been able to develop.

    幫忙示範

  • (Applause)

    我們所設計的儀器

  • So the device that you see

    (鼓掌)

  • is a 14-channel, high-fidelity

    你們所看到的儀器是

  • EEG acquisition system.

    有十四個頻道,高傳真的

  • It doesn't require any scalp preparation,

    腦電波訊號擷取系統

  • no conductive gel or paste.

    不需要任何頭皮準備程序

  • It only takes a few minutes to put on

    沒有導電的膠或漿糊

  • and for the signals to settle.

    戴上它,等訊號穩定

  • It's also wireless,

    只要幾分鐘

  • so it gives you the freedom to move around.

    而且是無線的

  • And compared to the tens of thousands of dollars

    它讓你活動自如

  • for a traditional EEG system,

    比起那些幾萬美元的

  • this headset only costs

    傳統腦電波系統

  • a few hundred dollars.

    這個頭戴式耳機

  • Now on to the detection algorithms.

    只要幾百美金

  • So facial expressions --

    現在來談談大腦感應演算法

  • as I mentioned before in emotional experiences --

    好,面部表情--

  • are actually designed to work out of the box

    如同之前講到的情緒經驗--

  • with some sensitivity adjustments

    這套系統有令人意想不到的設計

  • available for personalization.

    只要做一些敏感度調整

  • But with the limited time we have available,

    就可以運用於個人化的使用

  • I'd like to show you the cognitive suite,

    但因時間的關係

  • which is the ability for you

    現在只示範認知的部份

  • to basically move virtual objects with your mind.

    這套系統能夠讓您

  • Now, Evan is new to this system,

    只用意念移動虛擬物件

  • so what we have to do first

    Evan是第一次接觸這個系統

  • is create a new profile for him.

    因此我們要先

  • He's obviously not Joanne -- so we'll "add user."

    建立一個新的檔案

  • Evan. Okay.

    他當然不是Joanne, 所以要增加一個用戶

  • So the first thing we need to do with the cognitive suite

    Evan,好了!

  • is to start with training

    首先要做的是

  • a neutral signal.

    練習發出一個

  • With neutral, there's nothing in particular

    中立的訊號

  • that Evan needs to do.

    Evan不需要做

  • He just hangs out. He's relaxed.

    什麼特別的事

  • And the idea is to establish a baseline

    就這樣放輕鬆

  • or normal state for his brain,

    重點是建立一個基準線

  • because every brain is different.

    或是大腦的正常狀態

  • It takes eight seconds to do this,

    因為每個人的腦都不相同

  • and now that that's done,

    這大概需要八秒的時間

  • we can choose a movement-based action.

    完成了

  • So Evan, choose something

    我們可以選擇一個有動作的活動

  • that you can visualize clearly in your mind.

    Evan,你可選擇一個

  • Evan Grant: Let's do "pull."

    在你腦海中可以清楚看到的事情

  • Tan Le: Okay, so let's choose "pull."

    讓我們做一個"拉"的動作

  • So the idea here now

    好,點選"拉"

  • is that Evan needs to

    我們現在

  • imagine the object coming forward

    需要Evan想像

  • into the screen,

    一件物品在螢幕上

  • and there's a progress bar that will scroll across the screen

    往前移動

  • while he's doing that.

    他這樣做的時候

  • The first time, nothing will happen,

    螢幕上會出現一個測量棒

  • because the system has no idea how he thinks about "pull."

    第一次沒有任何事情發生

  • But maintain that thought

    因為系統還不知道他怎麼想像"拉"的動作

  • for the entire duration of the eight seconds.

    在這八秒中

  • So: one, two, three, go.

    持續想著這個念頭

  • Okay.

    一、二、三、開始

  • So once we accept this,

    好了

  • the cube is live.

    當我們按了接受

  • So let's see if Evan

    這個方塊就活了起來

  • can actually try and imagine pulling.

    讓我們看看Evan

  • Ah, good job!

    能否真的嘗試想像"拉"的動作

  • (Applause)

    哇! 非常好!

  • That's really amazing.

    (鼓掌)

  • (Applause)

    真是令人驚訝!

  • So we have a little bit of time available,

    (鼓掌)

  • so I'm going to ask Evan

    我們還有一些時間

  • to do a really difficult task.

    我要請Evan

  • And this one is difficult

    做一些比較困難的動作

  • because it's all about being able to visualize something

    這個有點難

  • that doesn't exist in our physical world.

    因為要想像

  • This is "disappear."

    在物質界裡不存在的事物

  • So what you want to do -- at least with movement-based actions,

    就是 "消失"

  • we do that all the time, so you can visualize it.

    就動作而言

  • But with "disappear," there's really no analogies --

    因為經常做這些動作,所以能"看見"它

  • so Evan, what you want to do here

    但"消失"沒有任何類似的動作

  • is to imagine the cube slowly fading out, okay.

    Evan, 現在請你

  • Same sort of drill. So: one, two, three, go.

    想像這個方塊慢慢消失

  • Okay. Let's try that.

    一樣的練習。 一、二、三、開始

  • Oh, my goodness. He's just too good.

    可以了,我們試試吧

  • Let's try that again.

    我的天啊!他真的是非常厲害

  • EG: Losing concentration.

    再試一次

  • (Laughter)

    (EG儀器:) 失去專注力

  • TL: But we can see that it actually works,

    (笑聲)

  • even though you can only hold it

    這套系統真的辦到了

  • for a little bit of time.

    雖然只維持

  • As I said, it's a very difficult process

    一段很短的時間

  • to imagine this.

    我認為想像"消失"

  • And the great thing about it is that

    真的是非常困難

  • we've only given the software one instance

    這個系統了不起的是

  • of how he thinks about "disappear."

    這套軟體只有一次機會

  • As there is a machine learning algorithm in this --

    知道Evan是怎麼想像"消失"的

  • (Applause)

    而這部機器便學會了演算它

  • Thank you.

    (鼓掌)

  • Good job. Good job.

    謝謝

  • (Applause)

    很棒!很棒!

  • Thank you, Evan, you're a wonderful, wonderful

    (鼓掌)

  • example of the technology.

    謝謝,Evan你真的是這項科技

  • So, as you can see, before,

    最佳的展示人員

  • there is a leveling system built into this software

    正如你們所見

  • so that as Evan, or any user,

    這個軟體有一個水準測量系統

  • becomes more familiar with the system,

    Evan或其他使用者

  • they can continue to add more and more detections,

    對這個系統越熟悉

  • so that the system begins to differentiate

    就能不斷地增加更多,更多的檢測項目

  • between different distinct thoughts.

    這個系統就能開始分辨

  • And once you've trained up the detections,

    不同的明顯想法

  • these thoughts can be assigned or mapped

    當你訓練做這些檢測項目

  • to any computing platform,

    這些念頭、想法就能指定或聯繫到

  • application or device.

    任何的電腦平台、

  • So I'd like to show you a few examples,

    應用程式或儀器上

  • because there are many possible applications

    讓我為你們展示幾個例子

  • for this new interface.

    這個新界面有

  • In games and virtual worlds, for example,

    很多可運用的應用程式

  • your facial expressions

    例如在遊戲或虛擬世界

  • can naturally and intuitively be used

    你可以用臉部表情

  • to control an avatar or virtual character.

    自然、直覺地

  • Obviously, you can experience the fantasy of magic

    操控遊戲角色或虛擬人物

  • and control the world with your mind.

    無庸置疑,你將會親身體驗幻想的魔力

  • And also, colors, lighting,

    和運用意念來控制世界

  • sound and effects

    顏色,燈光

  • can dynamically respond to your emotional state

    聲音和音效

  • to heighten the experience that you're having, in real time.

    也可以不斷地變化來反映你的情緒狀態

  • And moving on to some applications

    即時強化你的感受

  • developed by developers and researchers around the world,

    現在來看看應用程式

  • with robots and simple machines, for example --

    全世界的研發人員發明了

  • in this case, flying a toy helicopter

    不同的機械人和簡單的機器,例如

  • simply by thinking "lift" with your mind.

    這個例子是操作玩具直昇機

  • The technology can also be applied

    只要用意念就可以讓它飛起來

  • to real world applications --

    這項科技也可以應用在

  • in this example, a smart home.

    實際生活中

  • You know, from the user interface of the control system

    看看智能家居的例子

  • to opening curtains

    從使用者界面控制系統

  • or closing curtains.

    來打開

  • And of course, also to the lighting --

    或關上窗簾

  • turning them on

    當然電燈也可以

  • or off.

  • And finally,

    或關

  • to real life-changing applications,

    最後

  • such as being able to control an electric wheelchair.

    是應用在改善真實生活

  • In this example,

    例如能夠控制電動輪椅

  • facial expressions are mapped to the movement commands.

    這個例子裡

  • Man: Now blink right to go right.

    面部表情對應於移動方向的指令

  • Now blink left to turn back left.

    男聲: 現在眨右眼右轉

  • Now smile to go straight.

    眨左眼左轉

  • TL: We really -- Thank you.

    微笑往前

  • (Applause)

    TL: 我們真的.... 多謝各位。

  • We are really only scratching the surface of what is possible today,

    (鼓掌)

  • and with the community's input,

    現今我們所做到的只是很小的一部分

  • and also with the involvement of developers

    有研發團隊的投入

  • and researchers from around the world,

    及全世界的研發和

  • we hope that you can help us to shape

    研究人員的參與

  • where the technology goes from here. Thank you so much.

    我們希望這一項科技能夠

Up until now, our communication with machines

譯者: Jeannie Cheng 審譯者: Sunshine Wang

Subtitles and vocabulary

Click the word to look it up Click the word to find further inforamtion about it

B1 US TED 大腦 動作 儀器 表情 頭皮

【TED】譚樂:讀取腦電波的耳機 (讀取腦電波的耳機|譚樂) (【TED】Tan Le: A headset that reads your brainwaves (A headset that reads your brainwaves | Tan Le))

  • 39 2
    Zenn posted on 2021/01/14
Video vocabulary