Subtitles section Play video
I would like to tell you a story
譯者: Bert Chen 審譯者: Kuo-Hsien Chiang
connecting the notorious privacy incident
我想告訴各位一則故事
involving Adam and Eve,
是著名的亞當和夏娃隱私事件
and the remarkable shift in the boundaries
是著名的亞當和夏娃隱私事件
between public and private which has occurred
以及這10年來, 在公眾與個人之間分界的重大改變
in the past 10 years.
以及這10年來, 在公眾與個人之間分界的重大改變
You know the incident.
以及這10年來, 在公眾與個人之間分界的重大改變
Adam and Eve one day in the Garden of Eden
你知道這起事件
realize they are naked.
有一天亞當和夏娃在伊甸園
They freak out.
發現他們都沒穿衣服
And the rest is history.
他們嚇壞了
Nowadays, Adam and Eve
其餘的部分你們都知道了
would probably act differently.
換做是現在的話, 亞當和夏娃
[@Adam Last nite was a blast! loved dat apple LOL]
可能會有不同的反應
[@Eve yep.. babe, know what happened to my pants tho?]
(twitter)@亞當 昨晚的表現真是精采! 愛死那顆蘋果了
We do reveal so much more information
(twitter)@夏娃 寶貝你知道我的褲子怎麼了嗎?
about ourselves online than ever before,
在網路上, 我們都比從前透露出更多關於自己的訊息
and so much information about us
在網路上, 我們都比從前透露出更多關於自己的訊息
is being collected by organizations.
而這些有關我們的訊息
Now there is much to gain and benefit
正被許多政府機構收集起來
from this massive analysis of personal information,
現在可以從分析個人資訊或是巨量資料中得到許多利益
or big data,
現在可以從分析個人資訊或是巨量資料中得到許多利益
but there are also complex tradeoffs that come
現在可以從分析個人資訊或是巨量資料中得到許多利益
from giving away our privacy.
但是在捨棄隱私權的同時, 也伴隨著複雜的得失交換
And my story is about these tradeoffs.
但是在捨棄隱私權的同時, 也伴隨著複雜的得失交換
We start with an observation which, in my mind,
我要講的故事是有關這些得失交換
has become clearer and clearer in the past few years,
我們先從觀察開始
that any personal information
在我看來, 過去幾年中, 這個情況已經變得越來越明確
can become sensitive information.
任何個人資訊
Back in the year 2000, about 100 billion photos
都能變成敏感的訊息
were shot worldwide,
回朔到西元2000年的時候,
but only a minuscule proportion of them
全世界上所有人約拍出1000億張照片
were actually uploaded online.
但是只有極少數的照片
In 2010, only on Facebook, in a single month,
被上傳到網路上
2.5 billion photos were uploaded,
在2010年 光是一個月, Facebook用戶就上傳25億張照片
most of them identified.
在2010年時 光是一個月, Facebook用戶就上傳25億張照片
In the same span of time,
而多數照片上的人都可以被辨識出來
computers' ability to recognize people in photos
在這段時間裡
improved by three orders of magnitude.
辨認照片內人物的電腦運算能力
What happens when you combine
也加快了1000倍
these technologies together:
如果將這些技術結合起來
increasing availability of facial data;
會發生什麼事?
improving facial recognizing ability by computers;
取得了更多的臉部資料
but also cloud computing,
改善了電腦臉部辨識的能力
which gives anyone in this theater
還有雲端運算
the kind of computational power
這會給與現場任何一個人
which a few years ago was only the domain
一種運算能力
of three-letter agencies;
而這種運算能力在幾年前只專屬於
and ubiquitous computing,
那些政府機構
which allows my phone, which is not a supercomputer,
這種普及的運算能力
to connect to the Internet
能讓我的普通手機
and do there hundreds of thousands
連上網際網路
of face metrics in a few seconds?
在幾秒之內進行數十萬次的人臉辨識
Well, we conjecture that the result
在幾秒之內進行數十萬次的人臉辨識
of this combination of technologies
我們推測這些
will be a radical change in our very notions
技術結合的結果
of privacy and anonymity.
會顛覆我們
To test that, we did an experiment
對於隱私權與匿名性最初的想法
on Carnegie Mellon University campus.
為了進行測試 我們做了一項實驗
We asked students who were walking by
在卡內基美隆大學的校園裡
to participate in a study,
我們找路過的學生
and we took a shot with a webcam,
來參與這項研究
and we asked them to fill out a survey on a laptop.
我們拿視訊攝影機拍照
While they were filling out the survey,
請他們用筆電填寫問卷調查
we uploaded their shot to a cloud-computing cluster,
他們在填寫問卷的時候
and we started using a facial recognizer
上傳他們的照片到一個雲端運算群組
to match that shot to a database
使用一個臉部辨識系統
of some hundreds of thousands of images
將這組照片拿去與
which we had downloaded from Facebook profiles.
一個約有數十萬張圖像的資料庫比對
By the time the subject reached the last page
這些圖像是我們從Facebook的個人簡介下載下來的
on the survey, the page had been dynamically updated
等到受測者填寫到問卷最後一頁的時候
with the 10 best matching photos
畫面會更新成辨識器找出的10張最相符的照片
which the recognizer had found,
畫面會更新成辨識器找出的10張最相符的照片
and we asked the subjects to indicate
畫面會更新成辨識器找出的10張最相符的照片
whether he or she found themselves in the photo.
我們要求受測者指出
Do you see the subject?
是否有在這些照片中找到他們自己
Well, the computer did, and in fact did so
你有看到這名受測者嗎?
for one out of three subjects.
是的, 電腦有找到
So essentially, we can start from an anonymous face,
三人之中就有一人被找到
offline or online, and we can use facial recognition
基本上 我們能夠從一張不知名的臉開始,
to give a name to that anonymous face
不管是離線或在線 我們都能利用臉部辨識
thanks to social media data.
讓一張不知名的臉找到它的名字
But a few years back, we did something else.
這都是拜社群媒體資料庫所賜
We started from social media data,
但是幾年前 我們又做其他的事情
we combined it statistically with data
我們從社群媒體開始著手-
from U.S. government social security,
我們將它與美國社會安全局的資料做結合
and we ended up predicting social security numbers,
我們將它與美國社會安全局的資料做結合
which in the United States
我們可以猜出個人的社會安全號碼
are extremely sensitive information.
這在美國是一項極度敏感的個人資訊
Do you see where I'm going with this?
這在美國是一項極度敏感的個人資訊
So if you combine the two studies together,
你知道我在講什麼嗎?
then the question becomes,
所以如果你們將兩種研究結果加在一起,
can you start from a face and,
那這個問題就會變成
using facial recognition, find a name
你能從一張臉開始
and publicly available information
利用臉部辨識技術 找到他的名字
about that name and that person,
找到這個人的公開資訊
and from that publicly available information
找到這個人的公開資訊
infer non-publicly available information,
再從公開資訊
much more sensitive ones
推測出那些更加敏感的非公開資訊
which you link back to the face?
推測出那些更加敏感的非公開資訊
And the answer is, yes, we can, and we did.
然後你再回想起這張臉嗎?
Of course, the accuracy keeps getting worse.
答案是可以的, 而且我們也做到了
[27% of subjects' first 5 SSN digits identified (with 4 attempts)]
當然, 準確度還不是很好
But in fact, we even decided to develop an iPhone app
在四次嘗試中, 可以辨識出27%受測者的社會安全號碼前五碼
which uses the phone's internal camera
但事實上 我們甚至決定做一個 iPhone app
to take a shot of a subject
利用手機內建像機
and then upload it to a cloud
幫受測者拍一張照片
and then do what I just described to you in real time:
然後上傳至雲端網路
looking for a match, finding public information,
接下來馬上就像我對大家描述的一樣
trying to infer sensitive information,
即時找出相符的臉, 找出公開資訊
and then sending back to the phone
試著推斷敏感的私人資訊
so that it is overlaid on the face of the subject,
然後傳回手機
an example of augmented reality,
這些資訊會顯示在受測者的臉部照片旁
probably a creepy example of augmented reality.
這是一個擴增實境的例子
In fact, we didn't develop the app to make it available,
也許是一個會令人毛骨悚然的擴增實境案例
just as a proof of concept.
事實上我們並沒有讓這個app上市
In fact, take these technologies
只是做為一種觀念的證明
and push them to their logical extreme.
事實上, 利用這些科技到極致的時候
Imagine a future in which strangers around you
事實上, 利用這些科技到極致的時候
will look at you through their Google Glasses
想像一下未來, 你身旁的陌生人
or, one day, their contact lenses,
能透過Google眼鏡來看你
and use seven or eight data points about you
或者有一天 隱形眼鏡也能做到同樣的事情
to infer anything else
使用七或八個有關於你的資訊
which may be known about you.
去推測其他
What will this future without secrets look like?
可能與你相關的事
And should we care?
沒有秘密的未來會是什麼樣子?
We may like to believe
我們應該關心這個嗎?
that the future with so much wealth of data
我們可能比較願意去相信
would be a future with no more biases,
一個有這麼多數據資料的未來
but in fact, having so much information
會是一個沒有偏差的未來
doesn't mean that we will make decisions
但是, 事實上, 擁有這麼多資訊
which are more objective.
不表示我們能夠做出
In another experiment, we presented to our subjects
更客觀的決定
information about a potential job candidate.
在另一個實驗裡 我們把求職者的資訊給受測者看
We included in this information some references
在另一個實驗裡 我們把求職者的資訊給受測者看
to some funny, absolutely legal,
我們的資料含括
but perhaps slightly embarrassing information
關於一些有趣, 絕對合法
that the subject had posted online.
但也許稍微有點尷尬的訊息
Now interestingly, among our subjects,
這些都是受測者張貼在網路上的資訊
some had posted comparable information,
有趣的是 我們實驗的對象中
and some had not.
有些人也發表了類似的訊息
Which group do you think
但有些人則沒有
was more likely to judge harshly our subject?
你認為哪一組人
Paradoxically, it was the group
比較可能嚴厲批評我們的受測者?
who had posted similar information,
答案出乎意料的是
an example of moral dissonance.
那些發表類似訊息的人
Now you may be thinking,
這也是種道德觀念不一致的例子
this does not apply to me,
現在你可能正在想
because I have nothing to hide.
這對我來說沒用
But in fact, privacy is not about
因為我沒有什麼要藏的東西
having something negative to hide.
但事實上 隱私不只是
Imagine that you are the H.R. director
有什麼不好的東西要藏起來而已
of a certain organization, and you receive résumés,
想像你是某個組織的人事主管
and you decide to find more information about the candidates.
你收到應徵者寄來的履歷
Therefore, you Google their names
你決定要找出更多該名應徵者的訊息
and in a certain universe,
因此 你就在google上搜尋他們的名字
you find this information.
在特定時空
Or in a parallel universe, you find this information.
你可以找到這筆資訊
Do you think that you would be equally likely
或是在平行時空 你找到這筆資訊
to call either candidate for an interview?
你認為你會同樣的
If you think so, then you are not
打電話通知應徵者前來面試嗎?
like the U.S. employers who are, in fact,
如果你這麼認為,
part of our experiment, meaning we did exactly that.
那你就不像美國雇主
We created Facebook profiles, manipulating traits,
事實上, 他們也在我們的實驗當中
then we started sending out résumés to companies in the U.S.,
我們創造了一些Facebook個人簡介,
and we detected, we monitored,
然後寄送履歷到美國各家公司
whether they were searching for our candidates,
然後我們偵查、監控
and whether they were acting on the information
看是否他們正在上網搜尋我們的應徵者
they found on social media. And they were.
並且依照這些社群媒體上找到的資訊做事.
Discrimination was happening through social media
他們真的這麼作.
for equally skilled candidates.
透過社群媒體, 對技能相當的應徵者們來說
Now marketers like us to believe
也會發生不公平待遇的事情
that all information about us will always
現在行銷的人想讓我們相信
be used in a manner which is in our favor.
所有關於我們的個人資訊都會
But think again. Why should that be always the case?
用在對我們有利的面向
In a movie which came out a few years ago,
但是再想想, 真的會這樣嗎?
"Minority Report," a famous scene
幾年前上映的一部電影
had Tom Cruise walk in a mall
「關鍵報告」裡一個著名的場景
and holographic personalized advertising
就是湯姆克‧魯斯走進一間賣場
would appear around him.
有一個個人化的雷射投影廣告
Now, that movie is set in 2054,
出現在他旁邊
about 40 years from now,
那部電影的時空背景設定於2054年
and as exciting as that technology looks,
從現在算起 大約是40年之後
it already vastly underestimates
那種技術看起來很精彩
the amount of information that organizations
它已經大大低估
can gather about you, and how they can use it
各組織能夠匯集起有關你個人的資料量
to influence you in a way that you will not even detect.
與他們是如何運用這些資料
So as an example, this is another experiment
以某一個你無法查覺的方式, 對你造成影響
actually we are running, not yet completed.
還有一個例子 這是另一項實驗
Imagine that an organization has access
是我們正在進行中的實驗, 還沒有完成
to your list of Facebook friends,
想像一個組織能夠進入
and through some kind of algorithm
你的Facebook好友清單
they can detect the two friends that you like the most.
透過某種運算規則
And then they create, in real time,
他們可以偵測到你最喜歡的兩個好友
a facial composite of these two friends.
然後他們就能即時創造出
Now studies prior to ours have shown that people
由這兩個好友所組成的臉部合成照
don't recognize any longer even themselves
在我們之前有研究已經顯示
in facial composites, but they react
人們在看臉部合成照, 連他們自己都認不出來
to those composites in a positive manner.
人們在看臉部合成照, 連他們自己都認不出來
So next time you are looking for a certain product,
但是他們對那些合成照有正面評價
and there is an ad suggesting you to buy it,
所以下次你在找某項產品
it will not be just a standard spokesperson.
此時有一個建議購買的廣告
It will be one of your friends,
廣告將不會是一個固定的代言人
and you will not even know that this is happening.
他很可能是你其中一位朋友
Now the problem is that
你甚至不知道這種事正發生在你的生活中
the current policy mechanisms we have
現在問題就是
to protect ourselves from the abuses of personal information
目前政策機制是我們必須
are like bringing a knife to a gunfight.
保護我們自己免於個人資料遭到濫用
One of these mechanisms is transparency,
這就像是以卵擊石
telling people what you are going to do with their data.
其中一項機制就是資訊透明化
And in principle, that's a very good thing.
你必須告訴人們你想拿他們資料做什麼
It's necessary, but it is not sufficient.
原則上 這是一件非常好的事情
Transparency can be misdirected.
這是應該的, 但是這麼做還不夠
You can tell people what you are going to do,
資訊透明化的方向可能會被誤導
and then you still nudge them to disclose
你可以告訴大家你想做什麼
arbitrary amounts of personal information.
然後你促使他人揭露
So in yet another experiment, this one with students,
或多或少的個人資訊
we asked them to provide information
在另一項實驗中, 實驗對象是學生
about their campus behavior,
我們要求他們提供個人資訊
including pretty sensitive questions, such as this one.
關於他們在學校裡做的事
[Have you ever cheated in an exam?]
包括一些相當敏感的問題 就像這一個
Now to one group of subjects, we told them,
在考試的時候 你有作弊過嗎?
"Only other students will see your answers."
對其中一組受測者, 我們告訴他們
To another group of subjects, we told them,
只有其他的同學會看到你的答案
"Students and faculty will see your answers."
對另一組受測者 我們告訴他們
Transparency. Notification. And sure enough, this worked,
所有學生和教職員都會看到你的答案
in the sense that the first group of subjects
透明化 告知. 這真的有用.
were much more likely to disclose than the second.
第一組受測者
It makes sense, right?
比第二組受測者更有可能公佈事實
But then we added the misdirection.
合理吧?
We repeated the experiment with the same two groups,
但是之後我們加入誤導手段
this time adding a delay
我們對相同兩組學生重覆進行實驗
between the time we told subjects
這次在不同的時間告訴受測者我們是如何使用他們的資料
how we would use their data
這次在不同的時間告訴受測者我們是如何使用他們的資料
and the time we actually started answering the questions.
這次在不同的時間告訴受測者我們是如何使用他們的資料
How long a delay do you think we had to add
現在我們知道了
in order to nullify the inhibitory effect
你認為我們必須要延遲多久時間
of knowing that faculty would see your answers?
為使這種抑制效應無效
Ten minutes?
而這種效應就是知道教職員會看見你的答案?
Five minutes?
10分鐘?
One minute?
5分鐘?
How about 15 seconds?
1分鐘?
Fifteen seconds were sufficient to have the two groups
15秒怎樣?
disclose the same amount of information,
15秒就足夠讓兩組人
as if the second group now no longer cares
透露出相同資訊量
for faculty reading their answers.
就好像第二組人現在不再關心教職員會看他們的答案
Now I have to admit that this talk so far
就好像第二組人現在不再關心教職員會看他們的答案
may sound exceedingly gloomy,
現在我必須承認目前為止我說的這些話
but that is not my point.
可能聽起來非常沉悶
In fact, I want to share with you the fact that
但我要說的不是這個
there are alternatives.
事實上 我想與大家分享的是
The way we are doing things now is not the only way
還有替代方案
they can done, and certainly not the best way
我們現在實驗的方式
they can be done.
並不是唯一可行的方式
When someone tells you, "People don't care about privacy,"
當然也不是最好的辦法
consider whether the game has been designed
有人告訴你 「沒人會在乎他的隱私」
and rigged so that they cannot care about privacy,
想想看是否這場遊戲已經遭到設計
and coming to the realization that these manipulations occur
暗中操作 所以他們才不在意隱私權
is already halfway through the process
逐漸發現這些操作手段的已經入侵到那些能夠能夠保護你的方法中
of being able to protect yourself.
逐漸發現這些操作手段的已經入侵到那些能夠能夠保護你的方法中
When someone tells you that privacy is incompatible
逐漸發現這些操作手段的已經入侵到那些能夠能夠保護你的方法中
with the benefits of big data,
有人告訴你隱私
consider that in the last 20 years,
與巨量資料所帶來的利益是無法共存的
researchers have created technologies
想想看近20年
to allow virtually any electronic transactions
研究人員已經研發出數套技術
to take place in a more privacy-preserving manner.
讓幾乎所有電子交易
We can browse the Internet anonymously.
能夠在有更高度的隱私環境下進行
We can send emails that can only be read
我們可以匿名瀏覽網頁
by the intended recipient, not even the NSA.
傳送唯讀電子郵件
We can have even privacy-preserving data mining.
這些電子郵件僅能由指定的收件者閱讀 就連國家安全局都沒辦法查看
In other words, we can have the benefits of big data
我們甚至能在隱私受到保護的情況下 進行資料開採
while protecting privacy.
另一方面, 在保護隱私權的同時, 我們仍擁有巨量資料所帶來的好處
Of course, these technologies imply a shifting
另一方面, 在保護隱私權的同時, 我們仍擁有巨量資料所帶來的好處
of cost and revenues
當然 這些技術也可以看出,
between data holders and data subjects,
在資料持有人與資料提供者之間
which is why, perhaps, you don't hear more about them.
利益的變化
Which brings me back to the Garden of Eden.
這也許是為什麼你沒有聽過太多有關這些技術的事情
There is a second privacy interpretation
就讓我將話題轉回伊甸園
of the story of the Garden of Eden
有第二種
which doesn't have to do with the issue
對伊甸園故事的隱私解釋
of Adam and Eve feeling naked
這與亞當和夏娃
and feeling ashamed.
覺得全身赤裸
You can find echoes of this interpretation
和感到羞恥沒有關係
in John Milton's "Paradise Lost."
你可以在約翰·密爾頓的《失樂園》裡發現對於這個解釋的迴響
In the garden, Adam and Eve are materially content.
你可以在約翰·密爾頓的《失樂園》裡發現對於這個解釋的迴響
They're happy. They are satisfied.
在伊甸園裡 亞當和夏娃只是物品
However, they also lack knowledge
他們很快樂 很滿足
and self-awareness.
然而 他們也缺乏知識
The moment they eat the aptly named
和自覺
fruit of knowledge,
此刻他們恰好吃下名叫
that's when they discover themselves.
「知識」的水果
They become aware. They achieve autonomy.
就在那時他們才發現自我
The price to pay, however, is leaving the garden.
他們開始擁有自覺和自主能力
So privacy, in a way, is both the means
然而 所付出的代價就是必須離開伊甸園
and the price to pay for freedom.
所以, 隱私權是自由的意義也是代價
Again, marketers tell us
所以, 隱私權是自由的意義也是代價
that big data and social media
市場商人告訴我們
are not just a paradise of profit for them,
巨量資料與社群媒體
but a Garden of Eden for the rest of us.
不只對於他們是獲利的天堂
We get free content.
對我們其餘的人也是座伊甸園
We get to play Angry Birds. We get targeted apps.
我們可以得到免費的內容
But in fact, in a few years, organizations
我們可以玩憤怒鳥 使用挑選好的app
will know so much about us,
實際上,在幾年之內
they will be able to infer our desires
政府機構將知道許多關於我們的資訊
before we even form them, and perhaps
他們能在我們想到之前推斷我們想做的事情
buy products on our behalf
他們能在我們想到之前推斷我們想做的事情
before we even know we need them.
也許在我們知道我們需要這些東西之前, 就替我們購買產品
Now there was one English author
也許在我們知道我們需要這些東西之前, 就替我們購買產品
who anticipated this kind of future
現在有一名英國作家
where we would trade away
考慮到未來可能會發生這種情況
our autonomy and freedom for comfort.
到時候我們可能會為了過舒適的生活
Even more so than George Orwell,
而賤賣我們的自主能力與自由
the author is, of course, Aldous Huxley.
其著作比喬治·歐威爾還多
In "Brave New World," he imagines a society
這名作家當然就是奧爾德斯·赫胥黎
where technologies that we created
在《美麗新世界》書中 他想像出一個社會
originally for freedom
那裡的科技是
end up coercing us.
我們為了自由而創造的技術
However, in the book, he also offers us a way out
最後我們反被科技奴役
of that society, similar to the path
然而 在書中 他也提供我們一個逃離
that Adam and Eve had to follow to leave the garden.
那個社會的方式 與那條路很像
In the words of the Savage,
就是亞當和夏娃離開伊甸園的那條路
regaining autonomy and freedom is possible,
就「野蠻人」這個詞而言
although the price to pay is steep.
重新找回自主能力和自由是可行的
So I do believe that one of the defining fights
雖然需要付出的代價實在太高
of our times will be the fight
所以我相信我們這個時代的
for the control over personal information,
其中一個決定性的戰鬥將會是
the fight over whether big data will become a force
為掌控個人資訊而戰
for freedom,
不管巨量資料是否將成為一股迎向自由的力量
rather than a force which will hiddenly manipulate us.
這場戰鬥終將結束
Right now, many of us
而不會成為一股暗中操縱我們的力量-
do not even know that the fight is going on,
現在 我們當中許多人
but it is, whether you like it or not.
甚至都不知道 戰鬥正在進行
And at the risk of playing the serpent,
不管你喜不喜歡 這就是現況
I will tell you that the tools for the fight
冒著玩弄魔鬼的危險
are here, the awareness of what is going on,
我告訴各位, 這場戰爭的工具就在這裡
and in your hands,
了解現在發生什麼事
just a few clicks away.
就掌握在你手裡
Thank you.
只要用滑鼠點幾下就行了
(Applause)
謝謝大家