Subtitles section Play video
My students and I work on very tiny robots.
我的學生們和我致力於建造 微型的機器人,
Now, you can think of these as robotic versions
你們可以將其想像為機器人版本的
of something that you're all very familiar with: an ant.
一種你們都很熟悉的生物,螞蟻。
We all know that ants and other insects at this size scale
我們都知道, 螞蟻和其它這般大小昆蟲
can do some pretty incredible things.
能夠做到一些令人十分驚奇的事情
We've all seen a group of ants, or some version of that,
比如,我們都見識過一群螞蟻 或者類似的昆蟲
carting off your potato chip at a picnic, for example.
在野餐時搬走你的薯片。
But what are the real challenges of engineering these ants?
但是設計這些螞蟻機器人的 真正難處在哪裡呢?
Well, first of all, how do we get the capabilities of an ant
首先,我們如何能夠讓螞蟻大小的機器人
in a robot at the same size scale?
獲得螞蟻所擁有的能力呢?
Well, first we need to figure out how to make them move
我們首先需要弄清楚
when they're so small.
如何讓這麼小型的機器人動起來。
We need mechanisms like legs and efficient motors
我們需要諸如腿的機械裝置 以及高效的馬達
in order to support that locomotion,
來支持機器人的移動,
and we need the sensors, power and control
我們還需要感應器, 電源和操控系統
in order to pull everything together in a semi-intelligent ant robot.
來集中所有零部件到 一個半智能的螞蟻機器人中。
And finally, to make these things really functional,
最後,為了讓這些零部件真正運作起來,
we want a lot of them working together in order to do bigger things.
我們希望能有大批量 這樣的機器人一起協作,來完成更偉大的任務。
So I'll start with mobility.
所以,我將從移動性開始講起。
Insects move around amazingly well.
昆蟲擁有令人驚奇的移動能力。
This video is from UC Berkeley.
這段影片來自加州大學伯克萊分校,
It shows a cockroach moving over incredibly rough terrain
展現了一隻蟑螂爬過 一段相當複雜的路段,
without tipping over,
卻沒有跌倒,
and it's able to do this because its legs are a combination of rigid materials,
而牠能做到這一點是因為牠的腿由剛性材料組合而成,
which is what we traditionally use to make robots,
也就是我們傳統用於製造機器人
and soft materials.
和軟物質的材料。
Jumping is another really interesting way to get around when you're very small.
而體型很小時, 跳躍則是另一種十分有趣的移動方式。
So these insects store energy in a spring and release that really quickly
比如說,這些昆蟲在彈簧中儲存能量 然後快速地釋放出來
to get the high power they need to jump out of water, for example.
以獲得牠們跳出水面所需要的高能量。
So one of the big contributions from my lab
因此,我的實驗室 所做出的最大的貢獻之一,
has been to combine rigid and soft materials
就是將剛性材料和軟物質
in very, very small mechanisms.
在非常小的的機械裝置中結合。
So this jumping mechanism is about four millimeters on a side,
這個跳躍機械裝置的一面 大約是四毫米長,
so really tiny.
非常微小。
The hard material here is silicon, and the soft material is silicone rubber.
此處使用的硬材料是矽, 軟材料則是矽膠。
And the basic idea is that we're going to compress this,
這背後基本的想法就是 我們要壓縮這一塊
store energy in the springs, and then release it to jump.
然後在彈簧中儲存能量再釋放, 讓它跳躍起來。
So there's no motors on board this right now, no power.
所以現在這塊板上沒有馬達和電源。
This is actuated with a method that we call in my lab
而這一裝置的實現原理 在我的實驗室中被稱為
"graduate student with tweezers." (Laughter)
“拿著鑷子的研究生” (笑)
So what you'll see in the next video
所以,你將在下一條影片中看到的
is this guy doing amazingly well for its jumps.
是這個跳躍能力很出色的小傢伙。
So this is Aaron, the graduate student in question, with the tweezers,
這位是艾倫,那個拿著鑷子的研究生,
and what you see is this four-millimeter-sized mechanism
而你將看到的是這個四毫米長的機械裝置
jumping almost 40 centimeters high.
跳躍到幾乎40釐米的高度。
That's almost 100 times its own length.
大約是它自己長度的100倍。
And it survives, bounces on the table,
而且它倖存了下來,在桌面上彈跳著,
it's incredibly robust, and of course survives quite well until we lose it
十分強大,並且存活得很好直到我們找不到它的时候,
because it's very tiny.
因為它實在太小了。
Ultimately, though, we want to add motors to this too,
不過我們最終還是想要 在這個裝置中加上馬達,
and we have students in the lab working on millimeter-sized motors
而我們的實驗室裡也有學生 正在研究毫米尺寸的馬達
to eventually integrate onto small, autonomous robots.
以最終將它裝到 小型的自動機器人身上
But in order to look at mobility and locomotion at this size scale to start,
但是為了觀察如此微小的裝置的 機動性和移動能力,
we're cheating and using magnets.
我們“作弊”並使用了磁鐵。
So this shows what would eventually be part of a micro-robot leg,
這條影片展現了最终將會成為 微型機器人的腿的那一部份,
and you can see the silicone rubber joints
而你可以看到矽膠製成的接合點
and there's an embedded magnet that's being moved around
以及一塊被外在磁場控制而 四
by an external magnetic field.
處移動的嵌入式磁鐵。
So this leads to the robot that I showed you earlier.
這就引向了我之前 為大家展示的那個機器人。
The really interesting thing that this robot can help us figure out
真正有趣的是,這個機器人 能帮助我們弄清楚
is how insects move at this scale.
這樣規模的昆蟲是如何移動的。
We have a really good model for how everything
我們有一個很棒的模型來理解所有大小事物的移動方式,
from a cockroach up to an elephant moves.
小到一隻蟑螂,大到一隻大象。
We all move in this kind of bouncy way when we run.
跑步時,我們都以這種彈跳的方式移動。
But when I'm really small, the forces between my feet and the ground
但是當我的體型十分微小時, 我雙腳和地面之間的力量
are going to affect my locomotion a lot more than my mass,
會大大影響我的移動, 遠大於影響我的質量,
which is what causes that bouncy motion.
從而就造成了彈跳模式。
So this guy doesn't work quite yet,
這個小傢伙還沒能完全正常運作
but we do have slightly larger versions that do run around.
但是我們還有稍大些 能夠四處奔跑的版本。
So this is about a centimeter cubed, a centimeter on a side, so very tiny,
這大約是一立方釐米, 每一邊都為一釐米,非常微小,
and we've gotten this to run about 10 body lengths per second,
而我們讓它能夠以 每秒十個身長的速度奔跑,
so 10 centimeters per second.
也就是每秒10釐米的速度。
It's pretty quick for a little, small guy,
對於這麼小的傢伙來說是非常快了,
and that's really only limited by our test setup.
而這還僅僅侷限於我們的測試設置。
But this gives you some idea of how it works right now.
但現在這能讓你了解 它是如何運作的了。
We can also make 3D-printed versions of this that can climb over obstacles,
我們也可以製作它的3D打印模型, 可以跨越障礙物的模型,
a lot like the cockroach that you saw earlier.
十分像你們之前看到過的蟑螂。
But ultimately we want to add everything onboard the robot.
但是最終我們希望能 把所有部件都安置到機器人身上。
We want sensing, power, control, actuation all together,
我們想讓感應、電源、 操控和驅動一同實現,
and not everything needs to be bio-inspired.
並且不是所有部件都需要是仿生的。
So this robot's about the size of a Tic Tac.
而這個機器人差不多是指針大小。
And in this case, instead of magnets or muscles to move this around,
在這種情況下, 我們並沒有用磁鐵或肌肉,
we use rockets.
而是火箭裝置來使它移動。
So this is a micro-fabricated energetic material,
這是一片微加工的含能材料,
and we can create tiny pixels of this,
而我們能製造它的微觀像素,
and we can put one of these pixels on the belly of this robot,
然後將一塊像素放到這個機器人的腹部,
and this robot, then, is going to jump when it senses an increase in light.
當這個機器人感應到 光源增加時,就會跳躍。
So the next video is one of my favorites.
下一條短片是我的最愛。
So you have this 300-milligram robot
你能看到這隻300毫克的機器人
jumping about eight centimeters in the air.
在空中跳躍到大概8釐米高。
It's only four by four by seven millimeters in size.
但它只有4*4*7立方毫米的體積。
And you'll see a big flash at the beginning
在短片的開頭,能看到當能量被釋放時,
when the energetic is set off,
有一道大閃光,
and the robot tumbling through the air.
而機器人就在空中翻跟鬥
So there was that big flash,
所以此時就有一大道閃光,
and you can see the robot jumping up through the air.
然後你就可以看到 機器人在空中翻跟鬥。
So there's no tethers on this, no wires connecting to this.
而這個機器人的身上 沒有栓繩或連接電線,
Everything is onboard, and it jumped in response
所有的部件都安裝到位了,
to the student just flicking on a desk lamp next to it.
當旁邊的一個學生打開了桌面檯燈時,
So I think you can imagine all the cool things that we could do
機器人就會受到感應,跳躍起來。
with robots that can run and crawl and jump and roll at this size scale.
因此我想你能想像到我們用這樣尺寸的, 會跑、會怕、會跳、會滾的機器人,所能做到的很多很酷的事情。
Imagine the rubble that you get after a natural disaster like an earthquake.
想像一下一場自然災害, 如地震發生之後,產生的諸多碎石。
Imagine these small robots running through that rubble
想像一下這些微型機器人穿越過碎石
to look for survivors.
來尋找倖存者。
Or imagine a lot of small robots running around a bridge
或想像一下許多微型機器人跑過一座橋,
in order to inspect it and make sure it's safe
檢閱橋的質量,
so you don't get collapses like this,
保證它的安全性,
which happened outside of Minneapolis in 2007.
因而不至於造成發生在2007年,
Or just imagine what you could do
明尼阿波利斯市的橋體坍塌事件。
if you had robots that could swim through your blood.
或者就想像一下當這樣的機器人 游過你的血液時的樣子。
Right? "Fantastic Voyage," Isaac Asimov.
是吧?正如艾薩克·阿西莫夫在 《神奇的旅程》中所描述的一樣。
Or they could operate without having to cut you open in the first place.
然後醫生們從一開始就不需要開腹, 也能進行手術了。
Or we could radically change the way we build things
又或許我們能夠讓 微型機器人像白蟻一般工作,
if we have our tiny robots work the same way that termites do,
從而徹底改變我們建造事物的方式,
and they build these incredible eight-meter-high mounds,
而他們能夠在非洲和澳洲,
effectively well ventilated apartment buildings for other termites
為其他白蟻建造難以置信的,
in Africa and Australia.
高效率通風的八米高的土堆。
So I think I've given you some of the possibilities
所以我認為我已經向各位 展示了利用這些微型機器人,
of what we can do with these small robots.
所能實現的許多可能性。
And we've made some advances so far, but there's still a long way to go,
而迄今為止我們也取得了一些進步, 但仍有很長的路要走,
and hopefully some of you can contribute to that destination.
希望你們當中也有人能夠為此做出貢獻。
Thanks very much.
非常感謝。
(Applause)
(掌聲)