Underaddition, onehomeamorphousandbetweenthemis a lagerofthemfunction.
Wecancheckthatthisis a homomorefizz.
Andbyusingthelawsoflogarithms, thelogof X times y isequaltothelogof X plus a logof y toseeifthisis a niceamorphousum, wehavetotestthefitsofbaijiaction.
Let's firstcheckthatthisfunctionis 1 to 1.
Supposethatlogof X equalslogof y Sincethelogsareequal.
E toeachpowerisequaltothissimplifiesto x equals y Sothisfunctionis 1 to 1.
Next, therangeofthelockfunctionisallrealnumbers.
SothisfunctionisontoSointhisexample, thelogfunctionis a homomorphismandabiejectionThatmakesit a nice a morefizz.
Um, thesetwogroupsareIsomorFIC.
Forournextexample, Thefirstgroupwillbethenonzerocomplexnumbersundermultiplicationwhichwedenoteby a C withthemultiplicationsignhereit's understoodthatyouarenotincludingzerobecausezerodoesnothaveaninverseundermultiplication.
Thesecondgroupwillbethecomplexnumberswithabsolutevalueofoneundermultiplicationwilldenotethisgroupby s one.
Thisis a standardnotationwhentalkingabout n dimensionalspheres.
The S isshortforsphereandtheonetellsusthatdimensioninthiscase s oneisjust a circleonthecomplexplanewith a radiusofone.
Recallthateverycomplexnumbercouldbewritteninpolarformasourtimes e totheeighthAitawhere r isthedistanceof a complexnumbertwo, theOriginandVedaishowfaryouhavetorotatefromthepositive X axistoreachthecomplexnumber.
Withthissetup, wecannowdefine a homo.
Morphisinbetweenthesetwogroups.
Thefunctionis f ofourtimes E totheeyethetaequals e tothe A fatal.
Youcanvisualizethisbytakinganynonzerocomplexnumbers e drawingawayfromtheoriginto Z andmapping Z tothepointwhereitintersects s one.
Butisthis a home?
A morphism?
Let's check.
Letzeequalaretimes e tothealfaand w equal s times e totheeyebeta.
Wewanttocheckthat f of z times w equals f of z times f w tobeginsubstituteinthepolarforms.
Next, multiplythenumbersontheleftusingthedefinitionofthefunction f wecanseewhateachvaluemapstoo.